徳井紀子¹⁾・山内成人²⁾・真田靖士³⁾・境有紀⁴⁾・中埜良昭⁵⁾・諏訪田晴彦⁶⁾・福山洋⁷⁾
1)学生会員 東京大学工学系研究科,東京都目黒区駒場 4-6-1,tokui@iis.u-tokyo.ac.jp
2)非会員 東京大学生産技術研究所,東京都目黒区駒場 4-6-1,nyama@iis.u-tokyo.ac.jp
3)正会員 東京大学地震研究所,東京都文京区弥生 1-1-1, ysanada@eri.u-tokyo.ac.jp
4)正会員 筑波大学機能工学系,茨城県つくば市天王台 1-1-1, sakai@kz.tsukuba.ac.jp
5)正会員 東京大学生産技術研究所,東京都目黒区駒場 4-6-1, iisnak@iis.u-tokyo.ac.jp
6)非会員 国土交通省国土技術政策総合研究所,茨城県つくば市立原1, suwada-h92h9@nilim.go.jp
7)正会員 独立行政法人建築研究所,茨城県つくば市立原1, fukuyama@kenken.go.jp

1.はじめに

筆者らは,RC 造構造物の模型振動実験に伴う試 験体製作の労力と経費を節減できる簡易振動実験の 開発を行っている.その一環として,高靭性繊維補 強セメント複合材料(以下,HPFRCC)と主筋のみ で構成される超小型試験体を開発し,その試験体が RC 部材の履歴形状を模擬できることを振動実験で 確認した.しかし,端部固定法の異なる2種類の試 験体で耐力の実験値が異なる結果を得た¹⁾.本報で はこの2種類の試験体について,さらに静的加力実 験および解析を行った結果について報告する.

2. 試験体

試験体詳細図を図1に示す.端部にスタブを打ったS(スタブ)タイプと主筋とシアキーをナットで 固定したP(プレート)タイプの2種類である.試 験区間は同一で断面が30mm×30mm,高さ180mm の柱部分を想定している.HPFRCCには水セメント 比45% 砂セメント比40%のモルタルにポリエチレ ン繊維を体積比で1%混入したもの,主筋にはM4 のネジ鋼を用いた.

3.静的加力実験の方法

本加力システムは,試験体上部のスタブの水平を 保持しつつ,鉛直方向への伸びを許容した状態で, 試験体に逆対称曲げモーメントを作用させることが できる(図2).静的加力以外は,付加重量等の加力 制御システムは振動実験時と同一である.レーザ式 変位計で上下スタブの相対変位を,ロードセルで試 験体に作用するせん断力を計測した.また,危険断 面から上方10mm位置での回転角をレーザ式変位計 で計測した.加力は,図2中静的治具取り付け位置 に加力用治具を取り付け,ナットの締め付けによる 変位制御で行った.変位履歴は,振動実験時と同一 とし最後は正方向へ押し切った.

4.静的加力実験の結果

スライダ(鉛直)

静的治具 取付け位置

静的加力実験より得られた変形角 せん断力関係 を図3に示す.ここでの試験体タイプ間での耐力差 は,Sタイプ(2122N)の方がPタイプ(1911N)よ り1割程高い.これはSタイプではひび割れ発生後 も引張り応力を負担するが,Pタイプではひび割れ 発生後にはそれを負担しないためと考えられる.次 に,参考文献1)で行った振動実験結果と比較し, 載荷法の違いによる耐力差ついて考察する.Sタイ プでは,静的加力が動的加力よりも8%程低いのに 対し,Pタイプではほぼ同一であった.これはPタ イプでは危険断面位置外側のプレート内に主筋の付 着が切れている区間B(図1)を有しているため, 主筋の危険断面位置付近での歪領域がこの部分に拡 大し,動的載荷による強度上昇の影響を受けないた めと考えられる.

試験体

5.ファイバーモデルによる断面解析

実験で得られた載荷法および試験体タイプの違い による耐力差を検討するため,漸増一方向による断 面解析を行った.表1,2にHPFRCCおよび主筋の 材料試験結果を示す.載荷法の違いとして,静的加 力実験の模擬では通常の断面解析を,振動実験の模 擬では歪速度の影響を考慮した解析をそれぞれ行っ た.振動実験を模擬する場合,実験結果から得られ た試験体頂部の相対変位を1ステップ毎に入力し仮 定した曲率分布から HPFRCC および主筋要素に生 じている歪速度を求めた.

HPFRCCの圧縮強度および弾性係数と歪速度との 関係は式(1),(2)のように設定した²⁾.HPFRCCモデ ルは,圧縮強度に達するまでは,原点を始点とする 弾性剛性の傾きを持つ直線と,原点および圧縮強度 点を通る2次曲線の組み合わせとし,2線の交点で 直線から2次曲線へ切り替わるものとした.引張側 は,Sタイプの場合,圧縮側と同一の傾きを持つ直 線で表し,応力度が式(3)に示す引張り降伏強度値に 達した時点から,歪度が2%に至るまでその応力を 維持するものとした.Pタイプの場合,引張り応力 は負担しないものとした(式(4)).

主筋の降伏強度と歪速度との関係は式(5)のよう に設定した²⁾.主筋モデルは,弾性係数の傾きを持 つ直線で表し降伏強度値に達した時点から弾性係数 の 1/100 の傾きを持つ直線に切り替わるものとした.

[HPFRCC の圧縮強度]	
$ \boldsymbol{\varepsilon} > 10^1 \mu/\text{sec}$ $_d \boldsymbol{\sigma}_B = (0.06 \log \boldsymbol{\varepsilon} + 0.94)_s \boldsymbol{\sigma}_B$	(1)
$ \boldsymbol{\varepsilon} = 10^{1} \mu/\text{sec} d\boldsymbol{\sigma}_{B} = {}_{s}\boldsymbol{\sigma}_{B}$	(1)
ここで, $_d\sigma_B$:動的加力時の HPFRCC の圧縮強度	
。の:静的載何材料試験の HPFRCC の圧縮強度 [HPFRCC の弾性係数]	
$ \mathbf{z} > 10^{1} \mu/\text{sec}$ $_{d}E_{B} = (0.02 \log \mathbf{z} + 0.98)_{s}E_{B}$	(2)
$ \boldsymbol{\varepsilon} = 10^{1} \mu/\text{sec} d\boldsymbol{E}_{\boldsymbol{B}} = {}_{\boldsymbol{s}}\boldsymbol{E}_{\boldsymbol{B}}$	(2)
ここで, dE_B :動的加力時の HPFRCC の弾性係数	
E_B :静的載荷材料試験の HPFRCC の弾性係数	
[HPFRCC の引張降伏强度]	
・S タイプ $\sigma_{t}=\sigma_{B}/20$ ($\sigma_{B}={}_{s}\sigma_{B}$ または ${}_{d}\sigma_{B}$)	(3)
・P タイプ <i>σ</i> =0	(4)
[主筋の降伏強度]	
$ \mathbf{\epsilon} > 10^2 \mu/\text{sec}_d f_v = (0.05 \log \mathbf{\epsilon} + 0.90)_s f_v$	(5)
$ \mathbf{z} = 10^2 \mu/\text{sec} d\mathbf{f}_v = s\mathbf{f}_v$	(5)
ここで,	

表1 HPFRCC の材料特性(静的載荷)

	試験体	ヤング係数 ¹ (N/mm ²)	圧縮強度 (N/mm²)	圧縮強度時 歪度(%)	引張強度 (N/mm²)
動	スタブ	1.95 × 10 ^₄	45.74	0.34	2.00
的	プレート	1.69×10^{4}	47.68	0.40	2.14
静	スタブ	1.75×10^{4}	48.74	0.42	3
的	プレート	1.69×10^4	47.68	0.40	2 14

ヤング係数は、1/3 圧縮強度時の割線剛性
 2 表中の各試験値は3サンプルの平均値
 3 未計測

	表 2	土筋の材料特	性(靜旳軋何)			
主筋	断面積	ヤング係数	降伏強度	降伏強度時			
種類	(mm ²)	(N/mm ²)_	(N/mm ²)	歪度(%)			
M4 2	9.87	1.35 x 10°	443.77	0.55			
1 降伏強度は , 0.2%オフセット値 2 表中の各試験値は 3 サンプルの平均値							

曲率分布は次の2点を考慮し仮定した.1)Pタイ プは、プレート内に主筋の付着が切れている区間を 有している、2)変形角と危険断面上方10mm位置で の回転角関係(図4)において、同一変形角でPタイプ の回転角がSタイプの約2倍程度である.即ち、S タイプでは材軸方向の曲げモーメント分布に相似形 とし、Pタイプでは区間Bに相当する部分に曲率が 集中し、かつ、Sタイプと同一変形において、危険 断面位置上方10mm位置における回転角がSタイプ の1/2となるものとした(図5).

6. 解析結果

静的加力実験および振動実験に対する解析結果を 図6,7に示す.静的加力実験では,両試験体共に耐 力の実験値と解析値が良好に対応した.振動実験で は,Sタイプでは解析値と実験値が概ね一致したが, Pタイプでは解析値が約15%上回った.これは,解 析時に歪速度の影響を過大評価したと考えられる. 7.まとめ

振動実験で異なる耐力を示した端部固定法の違う 試験体について,静的加力実験および断面解析を行い,その解析値と実験値の比較検討を行った. 1)SタイプとPタイプの静的加力実験における耐力 差は,SタイプのHPFRCCが引張り応力を負担して いることによる.2)試験体の端部詳細による影響と 歪速度の影響を考慮した耐力の計算値は,Pタイプ で15%程度の過大評価となったが,Sタイプでは,

四1 加型, 未研(2) 所有11,6元未 謝藤 本研究の一部は,科学研究費補助金基盤研究(C)(2)「入力地震動をパ ラメタとした簡易震動実験手法の開発に関する研究((研究代表者:境有紀) による援助を受けた。また,試験体型枠および加力治具製作は,東京大学生 産技術研究所試作工場の協力を得た。参考文献 1)徳井紀子,山内成人,真 田靖士,境有紀,中埜良昭,諏訪田晴彦,福山洋:RC部材を模擬した超小 型試験体の振動台実験,日本地震工学会大会 2003 梗概集, pp.286-287, 2003.11 2)細矢博,岡田恒男,北川良和,中埜良昭,隈澤文後:ひずみ速 度の影響を考慮したファイパーモデルによる鉄筋コンクリート部材の断面 解析,日本建築学会構造系論文集,第492号,pp.83-92,1996.4