RC 部材を模擬した超小型試験体の振動台実験

○徳井紀子¹⁾・山内成人²⁾・真田靖士³⁾・境有紀⁴⁾・中埜良昭⁵⁾・諏訪田晴彦⁶⁾・福山洋⁷⁾
1)学生会員 東京大学工学系研究科,東京都目黒区駒場 4-6-1, tokui@iis.u-tokyo.ac.jp
2)非会員 東京大学生産技術研究所,東京都目黒区駒場 4-6-1, nyama@iis.u-tokyo.ac.jp
3)正会員 東京大学生産技術研究所,東京都目黒区駒場 4-6-1, sanada@iis.u-tokyo.ac.jp
4)正会員 筑波大学機能工学系,茨城県つくば市天王台 1-1-1, sakai@kz.tsukuba.ac.jp
5)正会員 東京大学生産技術研究所,東京都目黒区駒場 4-6-1, iisnak@iis.u-tokyo.ac.jp
6)正会員 国土交通省国土技術政策総合研究所,茨城県つくば市立原 1, suwada-h92h9@nilim.go.jp
7)正会員 独立行政法人建築研究所,茨城県つくば市立原 1, fukuyama@kenken.go.jp

1.はじめに

筆者らは,鉄筋コンクリート(以下,RC)造建築構造 物の簡易振動実験手法の開発を目的とし,高靭性繊維 補強セメント複合材料(以下,HPFRCC)と主筋のみによ り構成される超小型試験体を用いて横補強筋を十分に 配した RC 部材の曲げ復元力特性を模擬する手法の実 現可能性について検討するための振動実験および静 的加力実験を実施した¹⁾.

その結果,曲げが卓越する RC 部材の復元力特性を, 提案する試験体で概ね模擬できることを確認した.しか しながら,簡易的に取り付けたスタブ区間に生じたひび 割れに起因する危険断面の回転による試験体そのもの の剛体回転が起こり,応答変位が増大した事が問題点 として残った.

本報では、この問題点改善のため、試験体詳細について改良を加え、再度振動実験を実施した結果について報告する.

2.試験体の計画

本研究で計画する超小型試験体では,実大のRC部 材をそのまま縮小するのではなく,横補強筋の代わりに 補強繊維を用いている.これにより試験体は,小型化さ れ,製作の容易さも同時に実現できる.

文献 1)で実施した実験では、スタブ区間にひび割れ が生じたことが原因で変位が増大し、降伏変位の実験 値が解析値を大幅に上回る結果となった.よって今回 は、試験体に関する変動要因を試験体端部の固定方 法とし、スタブを試験区間と一体で打った試験体(Sタイ プ)と端部に20mm厚のプレートを配し、主筋とシアキー をナットにより固定した試験体(Pタイプ)の2種類を製作 した.図1に試験体詳細図、表1に試験体一覧を示す.

試験体は、断面が 30mm×30mm, 高さ 180mm の柱 部材である. 主筋を模擬した M4 全ネジ, およびコンクリ ートと横補強筋を模擬した HPFRCC により構成される. 使用した HPFRCC は、水セメント比 45%、砂セメント比 40%のモルタルマトリックス中にポリエチレン繊維(繊維 長さ:15mm, 繊維径:12 μ m)を体積比で 1.0%混入し たものである. 試験体製作に使用した HPFRCC の圧縮 試験結果を表 2 に, 主筋(M4 全ネジ)の引張試験結果 を表 3 にそれぞれ示す.

3.振動実験の計画

3.1 加振システムおよび計測計画

加振システムは、上部スタブの水平を保持しつつ試 験体を水平一方向に変形させ、鉛直方向への伸縮を 許容した状態で、試験体に逆対称モーメントを作用させ ることができるものとした.また、そのため加振システム には、加振方向および鉛直方向にそれぞれスライダが 設置されている.なお、本実験では、試験体に軸力を 作用させていない.図2に加振システムを示す.

図1 試験体詳細図 (単位:mm)

± 1	. =+ E+ /+	臣仁
ᅒ	計15中146-	- 11

試験 体名	柱断面 b×D (mm)	シア スパン比 M/Qd	端部 固定方法	繊維 混入率 V _f (%)	引張 主筋比 p _t (%)
S10M P10M	30 × 30	3.0	スタブ プレート	1.0	1.95
- - - - - - - - - - - - - - - - - - -					

我之前110000444914					
V _f	材齢	ヤング係数 1	圧縮強度	圧縮強度時	
(vol.%)	(日)	(N/mm ²)	(N/mm ²)	ひずみ度(%)	
1.0 ²	19	1.73 × 10 ⁴	50.06	0.40	

※2 表中の各試験値は3サンプルの平均値

素 3 主筋の材料特性

	衣で <u>工</u> 筋の利用的工						
	主筋	主筋 断面積 ヤング係数		降伏強度 1	降伏強度時		
	種類	(mm²)	(N/mm ²)	(N/mm ²)	ひずみ度(%)		
	M4 ²	9.87	1.74 × 10 ⁵	449.83	0.43		
2	※1 際仕論度け 0.2% オフセット値						

※2 表中の各試験値は3サンプルの平均値

変位の計測は、レーザ式変位センサ(分解能 3μm) を振動台上に設置し、点(a)の相対水平変位を計測した. また、加振方向に可動するようスライダを取り付けた部 材(c)にロードセル(b)および(b')を設置し、それぞれの 負担力を計測した.試験体のせん断力の計測値は、ロ ードセル(b)と(b')の差分から部材(c)の慣性力を差し引 き求めた.なお、部材(c)の慣性力は、点(d)に設置した 歪ゲージ式加速度センサで計測した絶対加速度に部 材(c)および下部スタブの質量を乗じて算出した.デー タ収録間隔は、0.002 秒とした.また、試験体の破壊性 状、破壊経過を記録のため加振後の目視による観察に 加え、ビデオカメラによる動画撮影を行った.

図2 加振システム

3.2 加振計画

本実験では、振動台の加振容量以内で試験体を破 壊できるように、加振システムに水平慣性力にのみ作用 する錘を搭載し、試験体上の総重量を3234Nとした.重 量および材料試験結果に基づき算出した試験体の弾 性固有周期は、0.074秒である.入力には、試験体の復 元力特性の把握すなわち静的漸増載荷実験の代用を 目的に、図3に示す振幅が徐々に増大するサイン波 (以下、漸増サイン波)を用いた.漸増サイン波の周期 は、予備解析結果より、塑性率4程度の等価周期に対 応する試験体弾性固有周期計算値の約3倍の0.20sec とした.

4.実験結果

各タイプにつきそれぞれ3体を加振した結果,3試験 体共にほぼ同一の履歴特性を示し、同一入力における 履歴の再現性を確認した. 振動実験結果より得られた 各タイプのベースシア係数-変形角関係のうちひとつを, 例として図 4 に示す. 両タイプともに, エネルギー吸収 能力に優れた曲げ降伏型の履歴を示していることが分 かる. 図中に示す水平線および鉛直線は、それぞれ平 面保持の仮定に基づき算定した降伏時におけるベース シア係数と変形角の計算値(C_{Bv}=0.55, R_v=10.90×10³) である.なお,降伏耐力と降伏変位の算定にあたり,主 筋および HPFRCC の応力度-ひずみ度関係は完全弾 塑性と仮定し,降伏時の材軸方向の曲率分布は逆対 称曲げ状態を仮定して反曲点が中央とした線形分布と 仮定した.S タイプの履歴では、ひずみ速度の影響と考 えられる耐力上昇がみられるが、両試験体ともに逆対称 曲げ変形が実現しているものとして算出した降伏点の 計算値と実験値における剛性低下点が良好に対応す る結果を得た、また、Pタイプの結果では、Sタイプのよう な耐力上昇が見られない.これは、図 1 中に示す端部 詳細において, P タイプが主筋の付着が切れている区 間(B)を有することから、危険断面位置における微小区 間で塑性変形が生じる S タイプに比べ, 塑性変形が集 中する区間が広範囲となるため、ひずみ速度の影響が 緩和されている可能性があると推察できる. 今後は、そ のメカニズムを解析的に追及する必要がある.

5.まとめ

試験体製作に伴う経費および労力を節減する HPFRCCを用いた超小型試験体による簡易振動実験 手法について検討し,改良を加えた超小型試験体の妥 当性を確認するための振動実験を行った.その結果, 逆対称曲げ変形が実現しているものとして算出した降 伏点の計算値が実験値と概ね一致し,提案する試験体 と加振システムの妥当性を確認することができた.

謝辞本研究は,科学研究費補助金基盤研究(C)(2)「入力地震動 をパラメタとした簡易震動実験手法の開発に関する研究」(研究代表 者:境有紀)を用いて行った

参考文献

 境・真田・徳井ほか:高靭性繊維補強セメント複合材料を用いた超 小型模型試験体による簡易震動実験手法の開発(その1,2,3),日 本建築学会大会学術講演梗概集(東海),pp.857-862,2003.9

