常時微動測定による静岡県県営壁式鉄筋コンクリート造共同住宅の動的振動性状評価

		正会員	太田	行孝*1	同	中埜	良昭 ^{**}
带中学者的	廃式教祭コンクリート 法	同	山内	成人 ^{*3}	同	田子	茂 ^{*4}
吊时 似 到则足 扫石作田	空式鉄励コングリート造	同	高橋	愛 ^{*4}	同	太田	勤 ^{*4}
<u>инн</u> тенн	1灰里川1土1人						

16 00

1.はじめに

壁式鉄筋コンクリート造(以下,壁式 RC 造)構造物の被 ||害事例は,兵庫県南部地震等の被害地震時においてもあまり 確認されておらず,また被害を被った場合でも比較的軽微な ものが大半であった.しかし,想定東海地震に代表される巨 大地震ではより大きな入力が予想されるため,実在する壁式 RC 造構造物の耐震性能を正確に把握し評価する必要がある.

そこで筆者らは,壁式 RC 造構造物の耐震診断ならびに相 互作用効果を考慮した地震応答解析による耐震性能の詳細な 検討を目的とし,まずその一環として,実在する壁式 RC 造 構造物の常時微動測定による動的振動性状の推定を行った. 本報では、その概要および結果について報告する.

2. 測定対象建物

測定対象建物は,静岡県静岡市に実在する県営職員住宅で, 地上4階,桁行長さ41.22m,梁間長さ6.57m,軒高11.60m の壁式 RC 造建物である.建物の概要を写真1に示す. 3. 測定概要

測定は,ムービングコイル型速度計を使用し、サンプリング 周波数 100Hz で 300 秒間収録した.図1に各測定点の位置を, 表1に各点の測定対象をそれぞれ示す.

4. 測定結果

4.1 スウェイ率, ロッキング率および周期比の算定

計測した速度波形から比較的定常的である 150~160 秒の 10 秒間のデータについて、ピーク振幅の平均値を求め、スウ ェイ率(S)およびロッキング率(R)を(1)式,(2)式より算 定した.スウェイ率およびロッキング率の算定概念図を図2 に,算定結果を表2にそれぞれ示す.ただし桁行方向につい ては,ロッキング成分と他の成分との位相差が大きく,ロッ キング成分の分離が不可能であったためスウェイ率のみを算 出した.

$S{=}X_{s}\!/\!X_{T}$, $R{=}X_{r}\!/\!X_{T}$	(梁間方向)	(1)
$S{=}Y_{s}\!/Y_{T}$, $R{=}Y_{r}\!/Y_{T}$	(桁行方向)	(2)

```
(~は10秒間のピーク振幅の平均値を表す)
```

次に,上記で求めたSとRを用いて,スウェイおよびロッキ ング動を含む系の周期T_{FIX+S+R}と基礎固定時の周期T_{FIX}および ロッキング動を含む系の周期T_{FIX+R}の比率を(3)式,(4)式から 求めると次のようになる。

$$\frac{T_{\text{FIX}+S+R}}{T_{\text{FIX}}} = \left(\frac{100}{100-S-R}\right)^{0.5} = 1.86 \text{ (梁間)}$$
(3)

$$\frac{T_{\text{FIX}+\text{S}+\text{R}}}{T_{\text{FIX}+\text{R}}} = \left(\frac{100}{100-\text{S}}\right)^{0.5} = 1.07 \text{ (梁間)}, \ 1.45(\text{桥行}) \tag{4}$$

Dynamic Performance of Box Frame Type Reinforced Concrete OHTA Yukitaka, NAKANO Yoshiaki, YAMAUCHI Naruhito, Construction by Microtremor Measurement

図1 測定点とチャンネル番号

表1 各測定データおよび応答成分の定義

番号	測定データ	応答成分の定義
CH1	1 階桁行方向X _B	スウェイ成分
CH2	1 階梁間方向Y _B	桁行方向:X _s =X _B 深間充向、X-X
CH3	1 階鉛直方向Z _s	米间万回:Y _s =Y _B ロッキング成分
CH4	自由地盤桁行方向X _G	桁行方向:
CH5	自由地盤梁間方向 Y_G	$X_r = (Z_W - Z_E) \times H/L_{79}$
CH6	自由地盤鉛直方向 Z_G	梁間方向:
CH7	. 1 階鉛直方向Z _w	Y _r =(Z _N - Z _S)×H/L ₃₈ 上初提选应答式公
CH8	1 階鉛直方向Z _N	上部 備 垣 心 合 成 分 析 行 方 向 ·
CH9	1 階鉛直方向 Z_E	$X_{FIX} = X_T - X_s - X_r$
CH10	屋上階桁行方向 X_T	梁間方向:
CH11	屋上階梁間方向 Y_T	$Y_{FIX} = Y_T - Y_s - Y_r$

H: 11.6m, L₃₈: CH3 とCH8 の水平距離, L₇₉: CH7 とCH9 の水平 距離

表2 スウェイ率及びロッキング率

沙田十百	S	R	100 - S - R	
采间刀凹	12.8%	58.3%	28.9%	
拆汽土石	S	100 - S		
נייו כע נ 1נוזי	52.3%	47.7%		

TAGO Shigeru, TAKAHASHI Ai, and OHTA Tutomu

4.2 卓越周期の推定

建物卓越周期を以下の手順により推定した.

各チャンネルのフーリエスペクトルを,FFT を用いて算出 する.検討対象時間は 300 秒とし,バンド幅 0.5Hz の ParzenWindow を用いて平滑化した.次に,スウェイ及びロ ッキング動を含む系の卓越周期およびロッキング動のみを 含む系の卓越周期を推定するため,建物屋上階のフーリエ 振幅を地表面のフーリエ振幅および1 階のフーリエ振幅で 除すことによりスペクトル比(図3(a)~(d))を求める.

上記 により求めたスペクトル比のピークより卓越周期の 候補を決める.このとき 0.7Hz~0.8Hz近辺にいずれもピー クが見られるが,工学的に判断して卓越周期とは見なさな いこととした.梁間方向の周期T_{FIX+S+R}(図3(a))と桁行方向 の周期T_{FIX+R}(図3(d))については,顕著なピークが見られた ため,これらを卓越周期と特定した.桁行方向の周期 T_{FIX+S+R}と梁間方向の周期T_{FIX+R}については,ピークが特定 し難いため, および の方法により推定した.

梁間方向の周期T_{FIX+R}については,4Hz~6Hz付近にピーク が2つ見られた.そこで で推定したT_{FIX+S+R}=0.24(s)から (4)式を参考にT_{FIX+R}を算定すると 0.23(s)(4.4Hz)となり,一 方の卓越周期の候補と一致したため,これを卓越周期とし た.また基礎固定時の周期についても同様に, で推定し たT_{FIX+S+R}=0.24(s)から(3)式を参考にT_{FIX}=0.13(s)とした. (図3(c))

桁行方向の周期T_{FIX+S+R}を, で推定したT_{FIX+R} = 0.14(s)からと同様に(4)式を参考に算定すると,T_{FIX+S+R} = 0.20(s)となり, の推定幅のほぼ下限に相当する値となったことから,T_{FIX+S+R} = 0.21(s)とした.(図3(b))

以上の手順により特定した卓越周期の一覧を表3に示す. 4.3 周辺地盤の卓越周期

自由地盤の測定結果より水平2方向のフーリエ振幅の2乗 和の平方根および鉛直方向のフーリエ振幅をそれぞれ求め, 前者を後者で除した H/V スペクトルを算出し,周辺地盤の卓 越周期を推定した(図3(e)).周辺地盤の卓越周期は0.6(s)程度 と推定される.

5.まとめ

静岡市に実在する壁式 RC 造構造物の常時微動測定を行い, 動的振動性状の評価を行った.卓越周期,スウェイ・ロッキ ング率,および周辺地盤の卓越周期について明らかにした. 今後,この結果を参考に RC 造壁式構造物の相互作用効果を 考慮した地震応答解析を実施し,その耐震性能を診断・検討 する予定である.

【謝辞】測定にあたり,東京大学生産技術研究所研究生・ Rajarathinam Girija 氏,朴 珍和氏ほか関係各位より多大なご 支援をいただきました.ここに深く感謝の意を表します.

*1	東京大学大学院	修士課程
* 2	東京大学生産技術研究所	助教授・工博

*3 東京大学生産技術研究所 技術官

*4 (株)堀江建築工学研究所

図2 スウェイ率およびロッキング率の算定概念

表3 卓越周期一覧

	$T_{FIX+S+R}$	T _{FIX+R}	T _{FIX}		
梁間	0.24s(4.2Hz)	0.23s(4.4Hz)	0.13s(7.7Hz)		
桁行	0.21s(4.8Hz)	0.14s(7.1Hz)	-		

*1 Graduate Student, Graduate School, University of Tokyo

*2 Associate Prof., Institute of Industrial Science, Univ. of Tokyo, Dr. Eng.

*3 Technical Associate, Institute of Industrial Science, Univ. of Tokyo

*4 Horie Engineering and Architectural Research Institute Co.,Ltd.