免震工法により耐震改修された RC 造 5 層建物の振動性状変化

			止会員	〇本村	反一*'	同	局橋	興之**
鉄筋コンクリート構造物	常時微動	耐震改修	司	崔	琥* ²	同	中埜	良昭* ³
固有周期	減衰定数							

1. はじめに

免震工法により改修計画された RC 造庁舎建物の工事 前,工事中及び工事後の常時微動を計測し,振動性状の 変化を分析した結果を報告する.

2. 対象建物及び耐震改修工事の概要

対象建物は,静岡県裾野市に建つ地下1階,地上5階 建てのRC造庁舎(裾野市役所,写真1)であり,高さ 24.95m,地下1階は張間方向が4スパン(27.8m)/桁 行方向が10スパン(56.6m),1階は張間方向が3スパン (27.8m)/桁行方向が10スパン(56.6m),2階~5階 は張間方向が2スパン(16.8m)/桁行方向が8スパン (44.6m)である.基礎下には,約1万年前の富士山の 噴火により流出した溶岩が冷え固まる際に形成された空 洞(第一・第二)が通る特異な地盤に建つ(図1).

本建物では、2010年より耐震改修工事が行われている. 改修計画内容は、二つの地下空洞のうち地上に近い第一 空洞へのエアミルクの充填、柱梁の補強、地下1階柱頭 部への免震装置の設置、地下1階へのオイルダンパー5 基の設置である.本報では、耐震改修工事の着工以前に 行った常時微動計測の結果と、第一空洞の充填後、地下 1階にある RC 壁の多くを撤去し、柱の補強が一部終了 した工事途中の状態(免震装置、オイルダンパー未設置)、 及び地下1階の免震装置、オイルダンパー表設置」 了した状態(ただし外構部及び内装等の非構造材工事は 未完)での計測結果を比較した.

16m

第一空洞

第二空洞

地下空洞の位置

3. 常時微動計測概要

耐震改修工事前の 2008 年 11 月と,工事中の 2010 年 12 月,工事後の 2011 年 7 月に計測を行った.測定機器 は 2008 年に GEODAS-10-24HS, 2010 年及び 2011 年に GEODAS-15-HS を使用した.また,ピックアップはムー ビングコイル型速度計 CR4.5-2 型を使用し,サンプリン グ周波数は 100Hz,収録時間は 300 秒間とした.以上の 条件のもと,図 2 に示す 4 つの計測ケースについて多点 同時計測を実施した.

GL-5m

GL-10m

GL-15m

図 1

Vibrational Characteristics of a Five Stories Reinforced Concrete Building before and after the Seismic Retrofit

4. 計測結果

(1)卓越周期

計測ケース1より求めた,地下1階及び1階の常時微動水平成分のフーリエスペクトルに対する5階の常時微動水平成分のフーリエスペクトルの比を,バンド幅0.5HzのParzen Windowを用いて平滑化して(以下,全てのフーリエスペクトルを同様に平滑化して示す)図3に示す.5階/地下1階の伝達関数による卓越周期は,桁行方向では0.33秒から0.36秒,0.43秒と変化し,張間方向では0.25秒から0.29秒,0.38秒となり,地下1階の壁の撤去の後それぞれ0.03秒程度延び,免震装置設置の後それぞれ0.1秒程度延びた.

(2)減衰特性

減衰定数の評価を RD 法^{[1][2]}により試みた.得られた減 衰定数は重ね合わせ個数 600 個程度を超えると安定する 傾向にある(図 4).地下1階の壁の撤去の後,張間方向 については減衰定数は減少し,桁行方向については同程 度であった.免震装置の設置の後,梁間方向,桁行方向 ともに減衰定数は増加の傾向が見られた.

(3)スウェイ率, ロッキング率

スウェイ率とロッキング率の検討にあたり,図 5(a)に 示すような波形に対し,5 階の常時微動水平成分のピー クと地下1階の常時微動水平成分のピークを選択し,そ のピーク発生の時刻の差(ピーク時差と呼ぶことにする) が,『ある程度小さい』時,それぞれのピーク振幅を候補 として採用し,それらのピーク振幅の平均値の比から, スウェイ率・ロッキング率を算出することとした.

まず,図 5(a)に示すようなピーク時差が,『ある程度小 さい』とは具体的にどの程度が望ましいのか検討するた めに,ピーク時差を0.05秒から0.001秒まで徐々に低減 したときに求まるスウェイ率の変化を図5(b)に示す.図 5(b)から,ピーク時差を0.01秒より小さな値としたとき に,結果が安定する傾向が見られたので,以後の計算で は,許容するピーク時差は0.01秒として計算を行った.

以上の算出方法により計測ケース1のスウェイ率・ロ ッキング率を算出したところ,地下1階の壁の撤去後, 桁行方向,張間方向のスウェイ率,ロッキング率いずれ も増加し,免震装置設置後,桁行方向,張間方向のスウ ェイ率,ロッキング率いずれも増加した.(図 6)

(4)地下1階に対する1階の振動増幅

計測ケース2より求めた,地下1階床面に対する1階

床面のスペクトル比を図7に示す. 伝達関数の卓越周期 は桁行方向成分では 0.34 秒から 0.36 秒, 0.42 秒, 張間 方向成分では 0.25 秒から 0.29 秒, 0.39 秒にピークが見 られた.地下1階のRC壁の撤去の後,桁行方向では増 幅が生じ、桁行方向、張間方向ともに増幅する周波数帯 が長周期化した.免震装置の設置の後,桁行方向,張間 方向ともに増幅が生じ, 増幅する周波数帯もそれぞれ長 周期化した.なお、鉛直方向に増幅は見られなかった.

(5)地下1階及び1階床面の挙動

計測ケース 3 により床面のねじれ挙動の有無を調べた ところ, 耐震改修工事前, 工事中, 工事後にかかわらず, 両階ともにおいて水平成分の振幅・位相が概ね一致した. 鉛直成分は図 8(a)のように位相が一致せず、フーリエスペ クトルにおいても、図8(b)のように卓越周期がピックアッ プ設置点によって異なっている.以上から,地下1階及び 1階床面は水平方向には一体となって並進するが,鉛直方 向には面外にねじれ挙動を示す場合があると考えられる.

計測ケース4により床面の中折れ挙動の有無を検討し たところ,耐震改修工事前,工事中の地下1階及び1階 床面において, 波形は測定点同士で概ね一致しており, 中折れ挙動は生じないと考えられる.

5. まとめ

耐震改修工事前と工事中,工事後の RC 造 5 層建物の 常時微動を計測し、振動性状の変化を分析した結果、地 下階の壁撤去の後、卓越周期が 0.03 秒程度長周期化し、 減衰定数は張間方向で低下,地下1階に対する1階の振 動が桁行方向で増幅するなどの変化が見られた. 免震装 置の設置の後、卓越周期が 0.1 秒程度長周期化し、減衰 定数は桁行方向, 張間方向ともに増加が見られ, 地下 1 階に対する1階の振動が増幅するなどの変化が見られた. 【謝辞】

本調査の実施にあたり,静岡県,裾野市,戸田建設株式会社に協 力を得た.ここに謝意を表する.

【参考文献】

[1]日本建築学会:建築物の減衰, 2000.10

[2]田村幸雄, 佐々木淳, 塚越治夫: RD 法による構造物のランダム 振動時の減衰評価,日本建築学会論文報告集,第454号, pp.29-38, 1993.12

生産技術研究所 助教・博(工) 東京大学 *2 *3 東京大学 生産技術研究所 教授·工博

*1

Research Associate, Institute of Industrial Science, The Univ. of Tokyo, Dr.Eng. Professor, Institute of Industrial Science, The Univ. of Tokyo, Dr.Eng.