免震工法により耐震改修された RC 造5 層建築物の振動性状

Vibrational Characteristics of a Five-Story Reinforced Concrete Building after Seismic Retrofit with Base Isolation Technique

本 村 友 一*·浅 井 竜 也*·高 橋 典 之**·崔 琥**·中 埜 良 昭** Tomokazu MOTOMURA, Tatsuya ASAI, Noriyuki TAKAHASHI, Ho CHOI and Yoshiaki NAKANO

1. はじめに

本報告は、2008年11月8日、2010年12月19日、2011 年7月31日と3回にわたって実施した静岡県裾野市庁舎 (1975年建設、地下1階、地上5階建ての鉄筋コンクリー ト造建物)の地下空洞充填工事及び免震装置設置工事によ る建物の振動性状の変化を捉えるために実施した常時微動 計測の結果をまとめたものである。

2. 常時微動計測

2.1 建物概要

静岡県裾野市庁舎は、地下1階、地上5階建ての鉄筋コ ンクリート造建物で、高さ24.95m、地下1階は張間方向が 4スパン(27.8m)、桁行方向が10スパン(56.6m)、1階は 張間方向が3スパン(27.8m)、桁行方向が10スパン(56.6m)、 2階~5階は張間方向が2スパン(16.8m)、桁行方向が8 スパン(44.6m)である、建物基礎下には、約1万年前の 富士山の噴火により流出した溶岩が冷え固まる際に形成さ れた二層の空洞(第一空洞,第二空洞とそれぞれ呼ぶ)を 有し、鋼管杭が空洞を貫通するように配置されている、図 1に市庁舎配置図、写真1に市庁舎全景、図2に地下空洞 位置をそれぞれ示す。

*東京大学大学院学生

*東京大学生産技術研究所基礎系部門

2.2 改修工事概要および常時微動計測時期

裾野市役所では、2010年6月から2012年1月にかけて耐 震改修工事が行われた.改修は、二つの地下空洞のうち地 表に近い第一空洞へのセメントミルクの充填、地下1階柱 梁の断面拡大工事、地下1階柱頭部への積層ゴム(一部鉛 プラグ入り積層ゴム)およびオイルダンパ5基の設置であ り、それにより強震時における固有周期の長周期化と、減 衰性能の向上を図っている.図3に改修工法の概要、およ び図4に地下1階の免震装置配置図をそれぞれ示す.

表1に計測時期と、その時点での工事進捗状況を示す. 2008年に行った第1回の常時微動計測は耐震改修工事の 着工以前に行ったものであり、地下第一空洞の充填前の段 階であった.写真2に充填前の地下空洞の様子を示す.

2010年に行った第2回の常時微動計測は耐震改修工事 途中に行ったものである.地下第一空洞の充填工事は完了 しており,地下1階柱の断面拡大工事を行うために,地下 1階RC壁と柱との間に開口が新設され(写真3左),また 一部のRC壁は完全に解体された状態(柱の補強は一部完 了済み)であった.(写真3右)

2011年に行った第3回の常時微動計測は,耐震改修工事 が完了した状態で行ったものである.地下1階柱の断面拡 大工事完了後,地下1階柱頭部へ免震装置およびオイルダ ンパを設置し(写真4左),地下1階RC壁と柱との間に設 けた新設開口を閉塞し,地下1階RC壁全てに水平スリッ ト(写真4右)を設けた状態(ただし外構部及び内装等の 非構造材工事は未完了)で計測を行った.

2.3 計測方法および計測位置

計測方法は,計測機器に収録器(物探サービス株式会社 製 GEODAS-15-HS)およびピックアップ(物探サービス株 式会社製ムービングコイル型速度計CR4.5-2型)を使用 し,サンプリング周波数を100Hz,収録時間を300秒間と した.計測位置は図5に示す全4ケースとし,各計測ケー スについて多点同時計測を実施した.

図4 地下1階免震装置配置図(文献1)に基づき作成)

計測時期 および 計測日	工事進捗状況			
	第一空洞 充填	地下1階 壁 改修	柱梁** 補強	アイソレータ オイルダンパ 設置
第1回 (工事着手前) 2008年11月8日	未	未	未	未
第2回 (地下空洞充填後) 2010年12月19日	完了	開口設置 により 柱壁分離	一部完了	未
第3回 (免震装置設置後) 2011年7月31日	完了	開口閉塞 後水平지 ット 導入	完了	完了

表1 計測時期と工事進捗状況

※柱:地下1階,梁:地下1階および1階

計測ケースC 計測ケースD

図5 測定位置(↑等は計測方向を示す)

写真2 地下空洞充填前の状況(2008年)

写真3 地下1階工事の状況(2010年)

写真4 地下1階工事の状況(2011年)

計測ケースAは建物上部構造の振動性状を把握する目的 で,計測ケースBは地下1階床面(GL. - 2.8m)に対する 1階床面(G.L. + 1.2m)の振動性状の変化を調べる目的で, 計測ケースCは床面の面内変形およびねじれの有無を調べ る目的で,計測ケースDは床面の面外変形の有無を調べる 目的で,それぞれ実施した計測である.

2.4 検討項目とその検討手法

(1) 卓越周期

計測結果からフーリエスペクトルを求め,地下1階の常時微動水平成分のフーリエスペクトルに対する5階の常時 微動水平成分のフーリエスペクトルの比を伝達関数と定義 し,そのピーク値を示す周波数から卓越周期を求める.そ の際,フーリエスペクトルは全て,バンド幅0.5HzのParzen Windowを用いた平滑化処理を行った.

(2) 減衰定数

減衰定数の評価を RD 法²⁾³⁾ により試みる.5 階の常時微 動水平成分に2~5 Hz の周波数帯域を透過するバンドパ スフィルターを用いた後,微動波形正側のピークを抽出す る(図6).各ピークから2秒間の波を抽出し,それらを 重ね合わせた.図7のように重ね合わせた波の正負両側の ピーク値を算定し,(1)式より減衰定数ζを求める.

$$\xi = \frac{1}{2} \times \left(\frac{1}{3} \times \sum_{i=1}^{3} \frac{1}{2\pi} \ln \frac{P_{2i-1}}{P_{2i+1}} + \frac{1}{3} \times \sum_{i=1}^{3} \frac{1}{2\pi} \ln \frac{P_{2i}}{P_{2i+2}} \right) \quad (1)$$

ここで, P:振幅の値 [µm/s] である.

(3) スウェイ率およびロッキング率

本稿では、地下1階の常時微動水平成分をスウェイ成分 と定義し、地下1階の常時微動鉛直成分により算出される 回転量を5階部分の水平成分に置換したものを地下1階の ロッキング成分と定義し、それぞれの成分が5階の常時微 動水平成分に占める割合をそれぞれスウェイ率およびロッ キング率と定義した。

このとき,図8(a)に示すような波形に対し,5階の常 時微動水平成分のピークと地下1階のスウェイ成分のピー クの発生時刻の差に着目し(これをピーク時差と呼ぶ), これが設定した許容値より小さい時のそれぞれのピーク振 幅を用いて算出される振幅比の平均値より,スウェイ率を 求めた.なお、ロッキング率についても同様に求めた.

ここで, ピーク時差の許容値の設定に当たり, これを 0.05 秒から 0.001 秒まで徐々に低減させたときのスウェイ率の 変化を求めた.これを図8(b)に示す.図8(b)から, ピーク時差の許容値を0.01秒より小さな値としたときに, スウェイ率の算定結果が安定する傾向が見られたので,ピ ーク時差の許容値を0.01秒として計算を行った.

2.5 検討結果

(1) 卓越周期

地下1階の常時微動水平成分のフーリエスペクトルに対 する5階の常時微動水平成分のフーリエスペクトルの比と して定義した伝達関数を,計測ケースAについて図9に示 す.図9より,卓越周期は桁行方向では0.33秒から0.36秒, 0.43秒と変化し,張間方向では0.25秒から0.29秒,0.38秒 と変化している.地下1階の壁に開口を設け柱と壁を分離 し一部の壁を解体した後(2010年計測)それぞれ0.03秒程 度,地下1階柱頭部で縁を切り,免震装置を設置した後 (2011年計測)それぞれ0.1秒程度長周期化した.以上のよ うに免震装置導入後は卓越周期の長周期化が見られたもの の常時微動計測(微小変位レベル)では著しい変化は見ら れなかった.

同様に,地下1階床面に対する1階床面のフーリエスペ クトル比による伝達関数を,計測ケースBについて図10 に示す.図10より,卓越周期は桁行方向では0.34秒から 0.36秒,0.42秒,張間方向では0.25秒から0.29秒,0.39秒 と変化している.地下1階の壁に開口を設け柱と壁を分離 し一部の壁を解体した後(2010年計測),桁行方向では卓 越周期におけるスペクトル比に増大が見られ,桁行方向, 張間方向ともに卓越周期が僅かに長周期化した.免震装置 の設置の後(2011年計測),桁行方向,張間方向ともに増 幅が生じ,増幅する周波数帯もそれぞれ長周期化した.な お,鉛直方向ではスペクトル比の増大は見られないことを 別途確認している¹⁾.

図9 地下1階床面に対する5階床面の伝達関数

図10 地下1階床面に対する1階床面の伝達関数

(2) 減衰定数

前述の RD 法²⁾³ により得られた減衰定数を, 波の重ね合 わせ数と比較して図 11 に示す. 同図から減衰定数は重ね 合わせ数が 600 程度を超えると安定する傾向にある. 減衰 定数は図 11 に示す通り, 地下 1 階の壁に開口を設け柱と壁 を分離し一部の壁を解体した後(2010 年計測)では, 張間 方向については減少し, 桁行方向については同程度であっ た. また地下 1 階柱頭部で縁を切り, 免震装置およびオイ ルダンパを設置した後(2011 年計測)では, 梁間方向, 桁 行方向ともに減衰定数は増加した.

(3) スウェイ率およびロッキング率

2.4節(3)に示す手法を用いてスウェイ率およびロッキ ング率を求めた結果を図12に示す.図12に示す通り,地 下1階の壁に開口を設け柱と壁を分離し一部の壁を解体し た後(2010年計測),桁行方向,張間方向のスウェイ率, ロッキング率はいずれも増加し,地下1階柱頭部で縁を切 り,免震装置を設置した後(2011年計測),桁行方向,張 間方向のスウェイ率,ロッキング率はさらに増加した.こ れは地下1階のスウェイおよびロッキング成分が改修工事 の進捗に伴い,わずかに増大した一方,5階常時微動水平 成分が減少する傾向にあったため¹¹,これらの比率として 定義されるスウェイ率およびロッキング率が増大したため である.

図12 スウェイ率およびロッキング率の評価結果

(4) 床面の面内変形およびねじれ変形の有無の検討

地下1階床面,1階床面それぞれについて,両床面が図 13 (a),13 (b) に示すような面内変形およびねじれ変形を 起こしているかを確認した(計測ケースC).図14に地下 1階における2011年の計測結果を示す.

図14(a),(b)に示す通り、地下1階については水平成

分の振幅および位相が概ね一致しており,図13(a)に示 すような面内変形は発生していないと考えられる.一方, 鉛直成分については図14(c)に示す通り,位相が一致し ないことがあり,フーリエスペクトルにおいても,図15 に示すように卓越周期がピックアップ設置点によって異な っている.以上から,地下1階は水平方向には一体となっ て並進するが,鉛直方向にはねじれ挙動を示す場合がある

図14 計測ケースCの微動波形(2011年計測)

図15 床面四隅のフーリエスペクトル

と考えられる.

なお,1階についても前述と同様の傾向が見られること, 2010年および2008年に行った常時微動計測においてもこ れらと同様の傾向が見られることを別途確認している¹⁾. (5)面外変形の有無の検討

地下1階床面,1階床面それぞれについて,両床面が図 16に示すような面外変形を起こしているかを確認した(計 測ケース D).図17に示す通り,波形は計測点同士で概ね 一致している.2008年および2010年の計測においても,同 様の結果であることを確認しており¹⁾,したがって,耐震 改修工事前,工事中,工事後にかかわらず,地下1階およ び1階床面において,図16に示すような面外変形は生じな いと考えられる.

図16 面外変形の一例

(6) 空洞充填による振動性状の変化

空洞充填による影響を検討するため,空洞直上に当たる 地下1階床面の東端の点と中央の点の振動性状について, 空洞充填前の2008年の計測結果と充填後の2010年の計測 結果を比較した.

空洞充填により,空洞を貫通する鋼管杭が固定されるため,地下1階床面において卓越周期の短周期化が想定され

図18 空洞上に位置する地下1階床面の フーリエスペクトルの変化

たが,計測年により振幅に違いは見られたものの,既存地 盤が溶岩質で十分堅固であったため,卓越周期については そのような短周期化の傾向は見られなかった.(図18)

3.まとめ

静岡県裾野市庁舎の地下空洞充填工事及び免震装置設置 工事による建物の振動性状の変化を捉えるために 2008 年 11月8日,2010年12月19日,2011年7月31日と3回に わたって常時微動測定を実施した.その結果を以下にまと める.

- (1)卓越周期は、耐震改修工事前(2008年)に比べ、地下階の壁解体等(2010年)により0.03秒程度、免震装置の設置(2011年)により0.1秒程度それぞれ長周期化した.この変化は耐震改修工事の進捗に伴う主として地下1階から1階における振動性状の変化によって生じたものであるが、微動レベルではあまり大きな変化は見られなかった.
- (2)減衰定数は、耐震改修工事前に比べ、地下1階の壁の解体等により、張問方向については減少した。桁行方向については同程度であった。免震装置およびオイルダンパを設置した後は、梁問方向、桁行方向ともに減衰定数は増加した。
- (3) スウェイ率およびロッキング率は、耐震改修工事の 進捗に伴い増加した.
- (4) 地下空洞充填による地下1階床面における振動性状 の変化は、特に見られなかった。

辞

謝

本調査の実施にあたり,静岡県,裾野市,戸田建設株式 会社,堀江建築工学研究所および中埜研究室の大学院学生 諸氏に協力を得た.ここに謝意を表する.

(2012年9月10日受理)

参考文献

- 1) 裾野市:裾野市庁舎耐震補強工事事業完了報告書,2012.2
- 2) 日本建築学会:建築物の減衰,2000.10
- 田村幸雄,佐々木淳,塚越治夫:RD法による構造物のランダム振動時の減衰評価,日本建築学会論文報告集,第454号, pp.29-38,1993.12