梁の損傷を考慮した RC 造架構の残存耐震性能の評価手法 その1 全架構耐震性能残存率 SI_{maroin}の精算法

残存耐震性能評価 全架構耐震性能残存率 被災度 エネルギー消費量 特徴区間

1. はじめに

地震により被災した RC 造建物の安全限界までの余裕度の 減少度合を評価する方法は様々な形式で提案されているが, その多くは柱や壁などの鉛直部材のみの損傷を考慮したも のであり,現在の構造設計の主流である梁降伏型 RC 造建物 に適用することが難しい。そこで本研究では,梁降伏型 RC 造架構を対象とし,震災による架構の残存耐震性能の評価手 法について検討する。本報(その1)では架構のエネルギー 吸収能力に基づいた全架構耐震性能残存率 SI_{margin}(精算法) による残存耐震性能の評価手法(図1)を提案する。

2. 全架構残存耐震性能の評価手法

(1) 全架構耐震性能残存率 SImargin の精算法

仮想仕事の原理から地震動による外力仕事が内力仕事で ある架構のエネルギー吸収量と釣り合うものとすると,架 構のエネルギー吸収量の大小に基づき耐震安全性が評価さ れる。既往の研究に倣い^[1],架構の水平耐力が最大水平耐力 の 80%に低下した時を架構の安全限界と定め,単調載荷に よる架構の安全限界までのエネルギー吸収能力に対して, 最大応答変形直後の除荷時までの架構のエネルギー消費量 を除いた残存エネルギー吸収能力を比率で表し,全架構耐 震性能残存率 SI_{margin} とする(式(1))。ここで, $\Sigma E_{d,i}$:最大 応答変形後の除荷時変位までの部材 *i*のエネルギー消費量 の総和, $\Sigma E_{u,i}$:架構の水平耐力が最大耐力の 80%低下時ま で部材 *i* が吸収したエネルギー量の総和である。本研究では 繰り返し載荷時の荷重-変形関係に対して,その包絡線か ら求めたエネルギー消費量およびエネルギー吸収能力に基 づき全架構耐震性能残存率 SI_{margin} を算出することとする。

$$SI_{margin} = \left(1 - \sum_{i=1}^{n} E_{d,i} / \sum_{i=1}^{n} E_{u,i}\right) \times 100 \quad (\%) \tag{1}$$

(2) 被災度を表す特徴区間の定義

本研究では、見た目の損傷ではなく工学量に基づき被災 度を評価すべく、架構の骨格曲線に見られる特徴区間を被 災度の進展を表す特徴区間として以下のように定義する。 即ち、架構の骨格曲線においてひび割れ点を超えた部材の 発生から降伏点を超える部材の発生までを A 区間、降伏ヒ ンジが架構内の各所に進展しメカニズムに至るまでを B 区 間、架構の保有水平耐力を維持する C 区間、水平耐力が最 大耐力の 80%に低下するまでを D 区間、それ以降を E 区間 とする (図 2)。ここで、A~E 区間は従来の被災度区分にお ける軽微~倒壊をそれぞれ想定している。

3. 実験結果への適用

(1) 実験結果概要

梁降伏型 RC 造架構である 1 層 2 スパンの RC 造 1/2 スケ

ール平面試験体(中央柱のせん断補強筋比 p_w が 0.64%の試 験体で,以下:2SH-64 試験体)^[2],および,1層1×1スパン のRC造実大立体試験体(以下:1SF試験体)^[3]の荷重一変形 関係を図3に示す。図2に基づき各試験体の骨格曲線に現 れるA~E区間を定めると,2SH-64 試験体では,B区間と C区間の区間変形量はほぼ等間隔であるが,1SF試験体では, B区間よりC区間の区間変形量が大きくなっている。

各試験体の損傷量測定終了時の損傷状況を図 4 に示す。 2SH-64 試験体は腰壁の貫通破壊により中央柱が短柱化せず 柱脚部かぶりコンクリートの圧壊を伴う曲げ破壊に近い挙 動となった。1SF 試験体は全て曲げ部材であるが,梁上面 の計測における実験作業員の安全性を考慮して損傷量計測 を経験最大層間変形角 2%で中断した。

Evaluation Method of Residual Seismic Capacity for RC Frames considering Damage in BeamsQUAN Chunri, TAKAHASHI Noriyuki,
CHOI Ho and NAKANO YoshiakiPart 1: Exact Calculation Method for Residual Seismic Capacity of Overall FrameCHOI Ho and NAKANO Yoshiaki

図4 損傷量測定終了時の損傷状況

(2) SI_{margin}と被災度(特徴区間)との関係

式(1)に基づき全架構耐震性能残存率 SImargin を求め、被災 度を表す特徴区間との関係を図5に示す。あわせて、梁降 伏型架構に対し梁の損傷度分類は柱の損傷度定義を用いて, 略算法に基づき算出した耐震性能残存率 R^[4]を被災度と共 に図 5 に併記する。従来の略算法による耐震性能残存率 R に基づく被災度区分判定は,梁降伏型架構の残存エネルギ 一吸収能力に対して被災度を過大評価することが分かる。

また、全架構耐震性能残存率 SImargin と耐震性能残存率 R を 対象に,両試験体の被災度を定量的に表す特徴区間 A~D の閾 値を算出すると表1のようになる。表1より、大きくばらつい ている耐震性能残存率 Rと比べ, 全架構耐震性能残存率 SImargin は比較的閾値が近接していることがわかる。そこで,限られた データではあるが、対象とした2試験体では耐震性能残存率R よりも全架構耐震性能残存率 SImargin を用いたほうが被災度を より適切に評価できており、全架構耐震性能残存率 SImargin は 梁崩壊型試験体により適した指標であると考えられる。

(3) SI_{margin}に対する繰り返し載荷の影響

本研究では、全架構耐震性能残存率 SImargin を単調載荷時の 履歴エネルギーから算出することを原則としているが、繰り 返し載荷が全架構耐震性能残存率 SImargin に及ぼす影響を検 討するため,繰り返し載荷による全履歴エネルギー消費量を 用い算出した全架構耐震性能残存率 cSImargin とし、荷重-変 形関係の包絡線から求めた履歴エネルギー消費量に基づき 算出した全架構耐震性能残存率 SImargin との比較を以下に示 す。ただし、載荷計画において繰り返し載荷を経験せずに D 区間の限界(安全限界)に達した 1SF 試験体は対象とせず, 2SH-64 試験体における SImargin と cSImargin の比較結果を図 6 に 示す。図6より,2SH-64 試験体の繰り返し載荷による全履歴 エネルギー消費量から求めた全架構耐震性能残存率 cSImargin と荷重-変形関係の包絡線から求めた履歴エネルギー消費 量から算出した全架構耐震性能残存率 SImargin は概ね一致し ており,繰り返し載荷が架構の残存耐震性能を表す全架構耐 震性能残存率 SImargin に与える影響が小さいと考えられる。

4. まとめ

本報(その1)では、梁降伏型 RC 造架構を対象とする全

- *1 東京大学 工学系研究科 大学院生 *2 東北大学 工学研究科 准教授·博士(工学) *3 東京大学 生産技術研究所 助教·博士(工学) *4 東京大学 生産技術研究所 教授·工博

図 5 全架構耐震性能残存率 SImargin と耐震性能残存率 R 架構の特徴区間で区分される SImargin と Rの閾値 表 1

	0					
	特徴区間の区分					
試験体名	A-B 区間閾値		B-C 区間閾値		C-D 区間閾値	
	SImargin	R	SImargin	R	SImargin	R
2SH-64 試験体	96%	95%	84%	48%	63%	10%
1SF 試験体	96%	80%	90%	75%	55%	_
		D				

図 6 2SH-64 試験体の SImargin と cSImargin 架構残存耐震性能の評価手法の提案を目的として、架構 のエネルギー吸収量に基づいた全架構耐震性能残存率 SImargin の算定法(精算法)および被災度(特徴区間)を 提案した。また,梁降伏型 RC 造架構である 2SH-64 試験

体および 1SF 試験体の実験結果を用い、精算法に基づき 全架構耐震性能残存率 SImargin を算出するとともに、被災 度(特徴区間)を区分する SImargin の閾値を定めた。

【参考文献】[1]推淳日ほか:RC造架構の耐震安全性と耐震修復性 の相関モデルの提案 その1~その2,日本建築学会大会学術講演 梗概集,構造IV,pp.655-656,2012.9[2]東京大学生産技術研究所ほ か:耐震診断法の高度化に関する検討報告書,2011.3 [3]建築研究 所:災害後の建築物の機能維持・早期回復を目指した構造性能評価 システムの開発成果報告書,2011.1 [4]推淳日ほか:地震により被災 した梁降伏関 RC 造架構の耐震安全性能の評価手法に関する研究, 日本地電工学会大会一2012 輝輝 mp.234/235/2012.11 日本地震工学会大会-2012 梗概集, pp.234-235, 2012.11

Graduate Student, Graduate School of Eng., The Univ. of Tokyo Associate Professor, Faculty of Eng., Tohoku Univ., Ph.D. Research Associate, Institute of Industrial Science, The Univ. of Tokyo, Ph.D. Professor, Institute of Industrial Science, The Univ. of Tokyo, Dr.Eng.