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ABSTRACT 

 
 In this paper, a simplified method is proposed to predict the residual displacement 

where it is approximated by the point where a line connecting two displacement 
peaks in positive and negative domains of load-deflection curves crosses the 
abscissa. The accuracy of predicted residual displacement is much improved when 
the 3rd displacement peak is taken into account in addition to the 1st and 2nd 
displacement peaks. The proposed method is further extended and applied to the 
conventional capacity spectrum method to predict peak displacements. It is 
revealed that the method can successfully predict the residual displacements and 
enhance the conventional capacity spectrum method. 

 
 

Introduction 
 
 Most buildings, which satisfied the current design criteria, survived recent severe 
earthquakes in Japan, owing to the high requirement of the seismic performance to prevent 
building collapse and human casualties. Some building structures, however, showed damage to 
some extent after earthquakes and it cost much more than expected by building owners to have 
them repaired. They concern about not only direct but also indirect losses such as business 
downtime. Performance-based design therefore should include reparability and functionality of 
buildings after earthquakes. 
 
 To identify the reparability performance, an effective evaluation index is required. In 
recent studies especially for the precast concrete members, the residual displacement control is 
considered an effective method to assure the reparability performance. In this paper, the residual 
displacement after excitations is employed as an index to identify reparability performance of 
reinforced concrete structures. A simplified method is proposed to predict the residual 
displacement after excitations, and its accuracy is discussed through comparison with results of 
non-linear response analyses. 
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Prediction of Residual Displacement with Peak Response Displacements 
 
 In past researches, Goto et al. 1970 predict the residual displacement δr after excitations 
with the mean value of maximum response displacements in the positive and negative directions. 
Kitamura et al. 2009 conclude that the response after the maximum displacement particularly 
influences the residual displacement δr. In this study, the residual displacement is predicted using 
responses after the maximum displacement considering those results shown above to improve the 
prediction accuracy. 
 
Definition of Estimator RN of Residual Displacement 
 
 Reinforced concrete structures are idealized with an SDOF system in this study as shown 
in Fig. 1. The estimator RN (N=1, 2, 3,…) of residual displacement δr (point A) is defined in the 
following manner. 
 

 
 

Figure 1. Definition of estimator RN of residual displacement δr. 
 

 The 1st peak P1 in a non-linear earthquake response analysis is defined as the maximum 
response point, which is supposed to be found in the positive domain hereafter, as shown in Fig. 
1. The 2nd peak P2 is defined as the maximum response point in the opposite (i.e., negative) 
domain after P1, and the 3rd peak P3 is then defined as the 2nd maximum response point in the 
positive domain after P2. As shown below, subsequent peaks PN are then defined in the analogous 
manner described above. 
 
 ⋅ P2i-1: i-th max in the positive domain. 
 ⋅ P2i-1: i-th max in the negative domain. 
 
The estimator RN of residual displacement δr is then defined as the point where a line connecting PN 
and PN+1 crosses the abscissa as shown in Fig. 1. 
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Modeling of Building Structure 
 
 The hysteretic rules for building structures are idealized with Takeda model (Takeda et al., 
1970) in the nonlinear earthquake response analyses (Fig. 2). The base shear coefficient and the 
natural period of the structures are 0.3 and 0.3(s), respectively, in all analyses. A viscous 
damping factor proportional to instantaneous stiffness is assumed 5% of the critical damping. 
The cracking strength is assumed 1/3 of yielding strength and the secant stiffness at yielding is 
assumed 30% of the elastic stiffness. The post-yielding stiffness is assumed 0.1% of the elastic 
stiffness. The hysteretic parameter α for unloading stiffness in Takeda model is 0.5. Three 
observed earthquake records are applied for excitation, which are El Centro NS 1940, Tohoku 
NS 1978, and JMA Kobe NS 1995. The accelerations are scaled so that the maximum ductility 
factor µ of the model should reach 1.0, 2.0 and 3.0, respectively. Note that the residual response, 
rather than the structural safety due to large inelastic response, is the primary concern in this 
study, and the maximum ductility factor µ is therefore limited to 3.0 herein. 
 

 
Figure 2. Hysteretic model. 

 
Results of Analyses 
 
 Nine cases consisting of 3 parameters for input earthquake records and 3 target maximum 
ductility factors are investigated in this study, and the prediction error ε R of estimator RN is 
examined in each case as defined in Eq. 1: 
 

( ) yrNR R δδε 2−=  (1) 
 
where, RN is the N-th estimator of δr (N=1, 2, 3,…) shown in Fig. 1, δr is the residual 
displacement after non-linear response analysis, and δy is the yielding displacement of the model 
structure, respectively.  
 
 Fig. 3 shows prediction errors ε R with respect to N. In case of µ=1.0, the error ε R is 
negligibly small regardless of the value of N in any earthquakes since the values of RN and δr are 
much smaller than δy. In cases of µ=2.0 and 3.0, the error is much larger and does not necessarily 
decrease with increase in the value of N. The results found in Fig. 3 can be explained as fallows. 

Kr= (Qy+Qc)/(δy+δc) ⋅ |δmax/δy|-α 

Qy/mg 
(=0.3) 

Displacement 

Base shear coefficient 

K 

1/3 ⋅ Qy/mg 
 0.3K 

0.001K 

δy 
 

δc δmax 

Qy: yielding strength 
δc : cracking displacement 
δy : yielding displacement 
 



1 2 3 4 5
-0.2

-0.1

0.0

0.1

0.2

1 2 3 4 5 1 2 3 4 5
 

 

 
(R

N-δ
r)/2

δ y

 N

 

  µ =1.0  µ =2.0  µ =3.0

 

 

 
Figure 3. Prediction error ε R. 

 
 Supposing the 1st peak P1 falls within the positive domain and bearing the definition of 
estimator RN described in the previous section in mind, the values of R1 to R5 satisfy the 
following relation: R2<R1, R2<R3, R4<R3, R4<R5 (cf. Fig. 4: P5<P3<P1 and P2<P4). When δr is 
smaller than R2 (Fig. 4 left), R2 (N=2) is a better estimator of δr than R1 (N=1) due to the relation 
of δr <R2<R1. Thus the prediction is improved with increase in N. On the other hand, when δr is 
larger than R1, R1 (N=1) is a better estimator than R2 (N=2) due to the relation of R2<R1<δr. Thus 
the prediction is not improved with increase in N. The estimator RN with larger value of N does 
not necessarily give a better estimator of δr under the values of N equal to around 5 or 6 as 
investigated in this study, and the accuracy depends on the relation between RN-1, RN and δr. 
 
 Fig. 5 shows the ratio ρ =|(R2-δr)/(R1-δr)| to identify a better estimator, where R2 is a better 
estimator when ρ < 1.0 and R1 is a better estimator when ρ ≥ 1.0. As can be found in the figure, a 
plot in case of Tohoku NS 1978 (µ=3) can be better predicted by R1, and this is consistent with 
the result found in Fig. 3 as enclosed by a dotted line where the prediction error of R2 is larger 
than that of R1. 
 
 

 
 

Figure 4. Relationship of R1, R2, R3, and δr. 
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Figure 5. Relationship between ρ, R1, R2, and δr. 

 
Determination of Estimator R 
 
 The simplest procedure to predict the residual displacement δr is to employ R1 discussed 
above. There are, however, some cases where R2 is a better estimator than R1 as shown in Figs. 3 and 
5. To identify a better estimator between R1 and R2, the following procedure is discussed herein. 
 
 The difference between R1 and R2 is first examined. As can be found in Fig. 5, the 
following tendency can be derived. 
 
(1)When δr is larger than R1, the ratio ρ is close to 1.0 and the difference between R1 and R2 is 

therefore small. 
(2)When δr is smaller than R1, the ratio ρ is generally much smaller than 1.0 and the prediction 

error may significantly increase when δr is approximated by R1. 
 
To describe the closeness of R1 and R2 discussed above, an equivalent stiffness ratio K1/K2 is 
employed, where KN signifies the equivalent stiffness connecting peak values PN and PN+1 as 
shown in Fig. 4. Additionally, a new parameter γ defined in Eq. 2 is considered to express which 
of R1 and R2 is closer to δr. When δr is located just on the center of R1 and R2, γ is equal to 0. 
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 Fig. 6 shows the relationship between γ and K1/K2. When K1/K2 is smaller than 1.0, γ tends 
to be negative, which means δr is closer to R2. On the other hand, when K1/K2 is close to 1.0, γ 
tends to distribute around 0 or in the positive domain, and δr is therefore closer to R1. 
 
 As stated earlier, R1 can be the simplest estimator of δr. As can be found in Fig. 6, 
however, R2 can be a better estimator of δr in case of K1/K2 smaller than 0.95. Although the 
number of plots is limited in the figure, the following practical procedure can be proposed to 
predict δr considering the results above. 

δr<R2 R2<δr<R1 R1<δr 
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Poor prediction with R2 

Good prediction with R2 



⋅ δr=R1 when K1/K2 ≥ 0.95 as shown (a) in Fig. 6. 
⋅ δr=R2 when K1/K2< 0.95 as shown (b) in Fig. 6. 
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Figure 6. Relationship between γ and K1/K2. 

 
 Fig. 7 shows the relationship between R1 and Rmean, which is the mean value of maximum 
response displacements in the positive and negative directions previously studied by Goto et al. 
1970. The estimator R1 and Rmean show almost the same value in this figure, since the maximum 
response displacement in the negative direction appears after the first peak P1 in this study. 
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Figure 7. Relationship between R1 and Rmean 

 
 Fig. 8 (1) shows results simply predicted by R1 and Fig. 8 (2) shows those obtained by the 
procedure considering the threshold value of 0.95 for K1/ K 2. As can be found in the figure, the 
prediction error is, as shown in Fig.8 (2), significantly reduced after considering R2 or the 3rd 
peak displacement and the proposed procedure can be an effective tool to predict the residual 
displacement δr. 
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Figure 8. Relationship between δr, R1, and R2. 

 
Prediction of Residual Displacement using Earthquake Response Spectra 

 
 In the previous section, a procedure to predict δr with R1, R2 and K1/K2 (or P1, P2, and P3) 
are proposed. If the parameters above can be successfully predicted from the capacity spectrum 
method, the proposed procedure can be practically applicable in the structural design stage. 
 
 In the subsequent sections, a new approach to predict R1 and R2 from the capacity 
spectrum method is first proposed. It is then combined with the procedure described in the 
previous chapter and its applicability is discussed. 
 
Prediction of Peak Responses 
 
 A new approach to predict peak responses including those after the maximum using the 
capacity spectrum method is discussed. The procedure is shown in detail below. Note that the 
maximum response, i.e., the 1st peak response, is supposed to be found in the positive domain in 
this study. 
 
[1]Firstly, the maximum displacement P1* is predicted with the conventional capacity spectrum 

method in the positive domain using the structural capacity curve (i.e., backbone curve) and 
the demand spectrum (i.e., SA1-SD1 curve) as shown by point P1* in Fig. 9. 

 
Setting i equal to 1 in Eqs. 3 and 4, the demand SA1-SD1 curve is obtained by multiplying a 
reduction factor Fh1 and the response spectrum with a 5% damping factor to consider the 
effect of hysteretic energy dissipation due to non-linear response. The equivalent damping 
factor heq1 in Eq. 3 is evaluated by Eq. 4, and the definitions of dissipated energy 1W∆ * and 

1W * are illustrated in Fig. 10. The factor α1 in Eq. 4 is set 0.8 to predict the 1st peak response 
which is generally applied in Japan, considering the notification No.1457 by the Japanese 
Ministry of Construction, and Midorikawa et al. 2003: 

(1) Predicted with R1  (2) Predicted with R1 or R2 
      depending on K1/K2 
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where, iW∆ * is the hysteretic energy dissipation in one cycle, iW * is the equivalent potential 
energy, and αi is a reduction factor to allow for non-stationary responses to predict Pi*. 
 

[2]Secondly, the 2nd peak P2* is predicted in the negative domain using the concept analogous 
with the conventional capacity spectrum method as employed above. 
The employed backbone curve to predict the 2nd peak P2* is shown in Fig. 11, where the 
reloading curve in the negative displacement domain after P1* is used. Setting i equal to 2, the 
SA2-SD2 curve is obtained from the spectrum of 2nd peak defined in the previous chapter and 
Fh2 in Eqs. 3 and 4 where the factor α2 is tentatively set 0.8 considering preliminary studies on 
the ratio of hysteretic energy dissipation to 2W∆ during non-linear response analyses in the 
previous chapter. The definitions of 2W∆ * and 2W * are shown in Fig. 12 where the unloaded 
displacement in the negative domain δu2

n is assumed to follow the unloading rule of the 
Takeda model and the distance |o’- δu2

p| should be equal to |o’- δu2
n| to represent a stationary 

response. During calculations, the 2nd peak P2* is initially assumed -P1*, and iterative 
calculations are performed until the predicted peak converges. 

 
[3]The 3rd peak P3* is evaluated in the positive domain in the analogous manner described 

earlier. The employed backbone curve to predict the 3rd peak P3* is shown in Fig. 13, where 
the reloading curve in the positive displacement domain after P2* is used. Setting i equal to 3, 
the SA3-SD3 curve is obtained from the spectrum of 3rd peak defined in the previous chapter 
and Fh3 in Eqs. 3 and 4 where the factor α3 is tentatively set 1.0 considering preliminary 
studies as is done for α2. The definitions of 3W∆ * and 3W * are shown in Fig. 14 where the 
unloaded displacement in the positive domain δu3

p is assumed to follow the hysteric rule and 
the distance |o’- δu3

p| is equal to |o’- δu3
n|. During calculations, the 3rd peak P3* is initially 

assumed P1*, and iterative calculations are performed until converged. 
 

 

 

Re
sp

on
se

 ac
ce

ler
ati

on
 S

A

Response displacement SD

 

 

Response displacement SD  
                         Figure 9. Prediction of P1*.           Figure 10. Definition of 1W∆ * and 1W *. 
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Response displacement SD  
                         Figure 11. Prediction of P2*.          Figure12. Definition of 2W∆ * and 2W *. 
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Response displacement SD  
                         Figure 13. Prediction of P3*.          Figure14. Definition of 3W∆ * and 3W *. 
 
Prediction of Residual Displacements 
 
 Peak responses P1*, P2*, and P3* are obtained as shown in the previous section and then 
the residual displacement δr can be predicted by either R1* or R2*, in which RN* is the point 
where a line connecting PN* and PN+1* crosses the abscissa. 
 
 Predicted results considering criteria shown in the previous section are compared with 
those obtained in the non-linear response analyses in Fig. 15 As can be found in the figure, the 
predicted displacement using the capacity spectrum method compares well with those obtained 
from the non-linear response analyses and the proposed method can successfully predict the 
residual displacement. 
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Figure 15. Relationship between δr, R1*, and R2*. 
 

Conclusions 
 
(1)A simplified method is proposed to predict the residual displacement where it is approximated 

by the point where the line connecting two displacement peaks in positive and negative 
domains of load-deflection curves crosses the abscissa. Its accuracy is much improved when 
the 3rd displacement peak is taken into account in addition to the 1st and 2nd displacement 
peaks. 

(2)The proposed method above is further extended and applied to the conventional capacity 
spectrum method to predict peak displacements. It is revealed that the method can 
successfully predict the residual displacements and enhance the conventional capacity 
spectrum method. 
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