耐震補強要素が偏心配置された鉄筋コンクリート造骨組のねじれ応答性状

(その2 耐力偏心率の最大回転角への影響)

剛性偏心率、耐力偏心率、ねじれ応答、振動台実験

1.はじめに

本報では(その1)の静的載荷実験の結果を反映し、耐 力偏心率が建物のねじれ応答にどのような影響を与え るのか、重心位置における最大回転角の大きさに着目 して行った解析の結果について述べる。

また、本研究は振動台実験を行う事を前提としている ので、本解析では、振動台の性能及び試験体の縮尺に 合わせ修正を加えた地震波を用いて振動台実験の加 振波として最も適切な地震波の選定を試みる。

<u>2.解析手法</u>

2.1 ねじれ振動の運動方程式

ねじれ振動の運動方程式は、剛床仮定を用いて建物 を1質点3自由度系に置換すると、重心位置の力の釣り 合いと重心周りのモーメントの釣り合いから(1)式~(3)式 のように表される¹⁾。尚、簡単のために減衰力による項は 無視した。

$$m(\ddot{x}+\ddot{x}_0) + \sum_i k_x (x+_i l_y \cdot \boldsymbol{q}) = 0 \qquad \cdots (1)$$

$$m(\ddot{y}+\ddot{y}_0) + \sum_i k_y(y+_i l_y \cdot q) = 0 \qquad \cdots (2)$$

$$I\boldsymbol{q} + \sum_{i} {}_{i}k_{x}(x + i l_{y} \cdot \boldsymbol{q})_{i}l_{y} - \sum_{i} {}_{i}k_{y}(y - i l_{x} \cdot \boldsymbol{q})_{i}l_{x} = 0 \quad \cdots (3)$$

$$\Box \Box \Box \Box$$

m :建物重量

I : 回転慣性質量

, l,, l, : 重心位置から各構面までの距離

正会員	上田	芳郎 ^{*1)}	正会員	日野	^{*3)} 泰道
準会員	山内	成人 ^{*2)}	同	楠	浩一*4)
			同	中埜	良昭ँ

2.2 解析モデルの概要

解析モデルを図1に示す。本解析は(その1)で実施した静的載荷実験の結果に基づき、図1(a)~(c)に示す1 層1×1スパン、スパン長400mmの試験体を以下に述べる方法によりモデル化を行った。地震動の入力はX方向のみの1方向入力とした。柱部材及び補強部材は図1 に示すように別々にモデル化し、それら弾塑性バネを並列に結合させた。試験体における柱部材の直交方向の 強度は加振方向に対し1.54倍としているので直交方向は弾性挙動を仮定し、各構面に弾性バネを配した。また、 加振方向の剛性低下に伴う直交方向の剛性低下は無視した。

Torsional Response of Seismically Retrofitted R/C Structures

Part 2. Maximum Rotational Angle due to Eccentricity

Yoshiro UEDA, Naruhito YAMAUCHI, Yasumichi HINO, Koichi KUSUNOKI, Yoshiaki NAKANO

2.3 試験体の復元力特性のモデル化

図2に試験体各構面の復元力特性のモデル化を示す。 静的載荷実験の結果に基づき、柱及び壁部材の履歴を 武田モデル²⁾、ブレース部材はバイリニアスリップモデル を修正したものにそれぞれ置換した。振動台実験の実験 パラメータは偏心率であるので、初期剛性及び降伏耐力 は静的載荷実験の結果と一致させ、特に骨格曲線に着 目しモデル化を行った。図2に示す RC 造壁及びブレー ス部材の復元力に関しては、各補強フレームの復元力の 実験値から柱部材の復元力を差し引いて算出した。降 伏耐力以降の復元力特性に関しては、RC 造壁部材で せん断破壊を起こしており、急激な耐力低下が回転角に 影響を及ぼすものと考えられるが、負剛性時における減 衰定数の設定等について、別途、検討する必要があるた め、今回は特に降伏耐力付近までの挙動に着目し、各 部材の降伏耐力以降の復元力特性は降伏耐力を維持 し続けるものとしてモデル化を行った。

2.4 入力地震波

入力地震波には、 八戸 EW 波、 神戸 NS 波 El Centro NS 波の 3 波を使用した。地震波は、振動台実験の加振 波とするので周波数成分 0.1Hz 以下及び 30Hz 以上をカ ットし振動台で制御可能な地震波へ変換を行った。また、 相似則の検討により、実地震動を再現するためには試験 体の縮尺率(1/10)に対して、地震波の時間軸を圧縮する 必要がある。さらに、長期軸力が目標の1/2しか確保でき なかった事から、地震波の時間軸を1/√20に圧縮した。 解析の際には、最大加速度を重力加速度 G に対して 0.1G~1.0Gまで段階的に変化させ入力を行った。

2.5 モード形

図 3 に RC 造壁補強試験体及びブレース補強試験体 のモード形を示す。どちらも1次で回転振動、2次で並進 振動がそれぞれ卓越するモードとなった。

3.解析結果

図 4 に地震波の入力震度と重心位置における最大回 転角の関係を示す。X 軸の入力震度はベースシア係数 C_Bで除して基準化を行った。尚、ここで示すベースシア 係数は各試験体において、補強及び無補強両構面の耐 力を各々算出し、構面の耐力の単純和を試験体重量で 除したものとした。 八戸 EW 波及び神戸 NS 波では 0.5G で、El Centro NS 波では 0.6G でそれぞれ壁部材が降伏 した。いずれの地震波においても初期段階では耐力偏 心率の大小による違いはほとんど見られないが、降伏耐 力付近では耐力偏心率の大きいブレース補強試験体の 回転角が RC 造壁補強試験体を上回る。その傾向は El Centro NS 波において顕著である。

4.まとめ

(その 1)の静的載荷実験の結果をもとに試験体をモデ ル化し、弾塑性応答解析を行った。その結果、以下の知 補強構面の降伏耐力付近で耐力偏心率の 見を得た。 大きいブレース補強試験体の回転角が RC 造壁補強試 験体を上回る。 振動台実験に使用する加振波は今回 検討した3波のうちでは El Centro NS 波が適切である。 1)最新耐震構造解析、柴田明德 2)Reinforced Concrete 参考文献 Response to Simulated Earthquakes, T.Takeda, Journal of ASCE, pp2557-2573, Dec.1970

1) 東京大学大学院生

2)東京大学生産技術研究所 文部技術官 4)独立行政法人 建築研究所 研究員・工博 5)東京大学生産技術研究所 助教授·工博

;Univ. of Tokyo Graduate Student

Technical Associate ;Institute of Industrial Science, Univ. of Tokyo

3)独立行政法人 産業安全研究所 研究員·工修Research Engineer; National Institute of Industrial Safety、Independent Administrative Institution, Ms.Eng. Research Engineer ;Building Research Institute, Independent Administrative Institution, Dr. Eng. ;Institute of Industrial Science, Univ. of Tokyo, Dr. Eng. Associate Professor