多層1軸偏心建物の等価1自由度系への縮約

CONVERSION OF MULTI-STORY MONO-ASYMMETRIC BUILDING INTO EQUIVALENT SDOF MODEL

藤井賢志¹,中埜良昭²,真田靖士³

¹東京大学大学院工学系研究科博士課程,大学院生

Kenji Fujii, Graduate school of Engineering, The University of Tokyo, kfujii@iis.u-tokyo.ac.jp

2東京大学生産技術研究所,助教授工学博士

Yoshiaki Nakano, Institute of Industrial Science, The University of Tokyo, Dr. Eng, iisnak@iis.u-tokyo.ac.jp ³東京大学生産技術研究所,助手 博士(工学)

Yasushi Sanada, Institute of Industrial Science, The University of Tokyo, Dr. Eng, sanada@iis.u-tokyo.ac.jp

SUMMARY

This paper discusses the applicability of a simplified nonlinear analysis to estimate earthquake response of multi-story mono-asymmetric buildings. It consists of the nonlinear static analysis of equivalent single-story model and the nonlinear time-history analysis of equivalent single-degree-of-freedom model. The procedure was applied to two types of asymmetric structures: torsionally stiff structure and torsionally flexible structure. The result shows that the procedure can be applied to the torsionally stiff structure since it oscillates predominantly in the first mode.

キーワード:偏心建物,等価1自由度系,等価質量比.

Key words: asymmetric building, equivalent SDOF model, equivalent modal mass ratio

1. はじめに

想定した地震動に対する建物の非線形応答の評価は,近 年に開発された性能評価型の建物の耐震設計法や既存建 物の耐震診断手法の重要な項目である。この実用的な方法 として,建物が強震時に代表的なモードで振動していると 仮定して等価な1自由度系に縮約して非線形応答を評価 する方法が示されている¹⁾。筆者らはこれまでの検討にお いて,弾力半径比が大きい単層1軸偏心建物の場合には, 1次等価質量の占める比率が大きくなり,等価1自由度系 による応答評価が可能であることを示した²⁾。さらに,各 階重心および剛心,耐力の中心が同一鉛直線上にあり弾力 半径比が全層で等しい多層1軸偏心系を対象として等価1 自由度系による応答評価法を示した³⁾。本論文では,文献 3)で示した等価1自由度系による多層1軸偏心建物の応答 評価法の適用性を検証する。

2. 多層1軸偏心系の等価1自由度系への縮約

2.1. 解析建物の仮定 本検討で扱う多層 1 軸偏心建物は以下の仮定を満足す るものとする。

- 1) 建物の各階で質量 m,回転慣性質量 I が等しい。
- 建物の構面要素は互いに直交する方向に配置されて おり,その配置は各層で同一である。
- 建物の各層で同一位置にある要素の剛性・耐力の鉛直 方向の分布は同一である。
- 4) 建物の各階で重心は同一鉛直線上にある。1)から 4)の仮定により 5)が成立する。
- 5) 建物の各層で剛性偏心距離 *e_K*,重心まわりの弾力半
 径*j*および耐力偏心距離 *e_V*が等しい。

本論文では多層せん断型 1 軸偏心建物を対象とする。 Fig.1 に建物モデルを示す。

2.2. 多自由度系の等価1自由度系への縮約 一般のN自由度系の運動方程式は(1)式で与えられる。

$$[M]\{\ddot{a}\}+[C]\{\dot{a}\}+\{R\}=-[M]\{\alpha\}\cdot a_{g}$$
⁽¹⁾

ここで,

- [M] : 質量マトリクス [C] : 減衰マトリクス
- ${R}$: 復元力ベクトル ${d}$: 変位ベクトル
- *{α}*:地震動の入力方向を示すベクトル

a_s:入力地動加速度

である。なお,地震動の入力方向を示すベクトル{α}は, 解析対象物が平面構造物の場合には全ての成分が1のベ クトル,立体構造物の場合には加振方向の成分が1で残り の成分がすべて0のベクトルである。

(1)式において,系の振動が線形・非線形を問わず 1 次 モードにより支配されると仮定し,変位ベクトル{d}を(2) 式で表すものとする。

$$\{d\} = \beta_1\{\phi_1\} \cdot D_1^* \tag{2}$$

ここで,

 β_1 : 1 次刺激係数 $\{\phi_1\}$: 1 次モードベクトル D_1^* : 等価変位

である。(1)式に(2)式を代入し,さらに両辺の左側にβ₁{φ₁}^T を掛けて整理すると等価1自由度系の運動方程式((3)式) を得る。

$$\ddot{D}_{1}^{*} + \frac{C_{1}^{*}}{M_{1}^{*}}\dot{D}_{1}^{*} + \frac{R_{1}^{*}}{M_{1}^{*}} = -a_{g}$$
(3)

ここで,

である。

2.3. 多層1軸偏心系の等価質量比

多層1軸偏心系の応答が等価1自由度系の応答によっ て推定できるためには,当該多層1軸偏心系の応答におい

Fig. 1 Multi-story mono-asymmetric building

て線形・非線形を問わず1次モードが支配的であるという 前提条件がある。筆者らが既に行った検討において,1次 等価質量 M_1 *の占める比率が大きい場合には1次モード 応答が支配的となることが既にわかっている²⁾。そこで, 1次等価質量の占める比率を1次等価質量比 m_1 *と呼び, 多層1軸偏心系の1次等価質量比について以下に考察する。 2.3.1. 多層せん断型1軸偏心系の固有値解析

Fig.1 に示す多層せん断型 1 軸偏心系の非減衰弾性自由 振動の運動方程式は(5)式で与えられる。

$$\begin{bmatrix} [m] & 0 \\ 0 & [I] \end{bmatrix} \left\{ \begin{cases} \ddot{y} \\ \ddot{\theta} \end{cases} \right\} + \begin{bmatrix} [K_Y] & -[K_Y] \cdot e_K \\ -[K_Y] \cdot e_K & [K_Y] \cdot j^2 \end{bmatrix} \left\{ \begin{cases} y \\ \theta \end{cases} \right\} = \left\{ \begin{cases} 0 \\ 0 \end{cases} \right\}$$
(5)

ここで,

$$\begin{bmatrix} m & 0 & 0 \\ 0 & m & \ddots & \\ & \ddots & \ddots & 0 \\ 0 & 0 & m \end{bmatrix}, \begin{bmatrix} I \end{bmatrix} = \begin{bmatrix} I & 0 & 0 \\ 0 & I & \ddots & \\ & \ddots & \ddots & 0 \\ 0 & 0 & I \end{bmatrix}$$

$$m \quad : \ S \ B^{H} \widetilde{G} \widetilde{G} \ I \quad : \ S^{H} \widetilde{G} \widetilde{G} \ S^{H} \ S^{H$$

である。ここで,回転半径*i*,偏心比*E*および弾力半径比 *J*を(6)式で定義する。

$$i = \sqrt{\frac{I}{m}}, E = \frac{e_{\kappa}}{i}, J = \frac{j}{i}$$
(6)

(5)式は(7)式の変数変換により(8)式の形で表される。

$$\begin{cases} z \} = i \cdot \{\theta\} \\ \begin{bmatrix} [m] & 0 \\ 0 & [m] \end{bmatrix} \{ \{ \ddot{y} \} \} + \begin{bmatrix} [K_Y] & -[K_Y] \cdot E \\ -[K_Y] \cdot E & [K_Y] \cdot J^2 \end{bmatrix} \{ \{y\} \} = \{ \{0\} \} \\ \{0\} \end{cases}$$
(8)

(8)式の固有値*ω* および固有モード{*φ*}はそれぞれ(9)~
 (12)式の形となる事が志賀により既に示されている⁴。

$$\omega_k = \omega_{Ti} \cdot \omega_{Sj} \tag{9}$$

$$\{\phi_k\} = \{\phi_{TYi}\{\phi_{Sj}\}^T \quad \phi_{TZi}\{\phi_{Sj}\}^T\}$$
(10)

$$\begin{pmatrix} -\omega_{Ti}^{2} \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} + \begin{pmatrix} 1 & -E \\ T & T^{2} \end{vmatrix} \begin{pmatrix} \phi_{TYi} \\ \phi_{z} \end{pmatrix} = \begin{cases} 0 \\ 0 \end{cases}$$
(11)

$$\left(-\omega_{s_j}^{2}[m] + [K_Y])\phi_{s_j}\right) = \{0\}$$

$$(12)$$

すなわち(5)~(8)式より,各階重心および剛心,耐力の

中心が同一鉛直線上にある多層せん断型 1 軸偏心系の固 有円振動数 ω_k ・固有モード $\{\phi_k\}$ はそれぞれ偏心比E,弾力 半径比Jの等価単層 1 軸偏心系の固有円振動数 ω_{Ti} および 固有モード $\{\phi_{Ti}\}$ (= $\{\phi_{Tyi}, \phi_{TZi}\}^T$)と,無偏心多層せん断系 の固有円振動数 ω_{Si} ・固有モード $\{\phi_{Si}\}$ の「積」の形となる。

無偏心多層せん断系の1次モード刺激係数β_{S1}および等 価単層1軸偏心系の1次モード刺激係数β_{T1}は(13),(14)式 により得られる。

$$\beta_{S1} = \frac{\{\phi_{S1}\}^{T}[m]\{l\}}{\{\phi_{S1}\}^{T}[m]\{\phi_{S1}\}}$$
(13)

$$\beta_{T1} = \frac{\phi_{TY1}}{\phi_{TY1}^2 + \phi_{TZ1}^2} \tag{14}$$

以降の議論において, $\beta_{S1}{\phi_{S1}}$ を便宜的に無偏心系の1 次モードと呼ぶ事とする。なお,無偏心系の1次モードベ クトル ${\phi_{S1}}$ は最上階成分が1.0となるように基準化し,等 価単層偏心系の1次モードベクトル ${\phi_{T1}}$ は並進成分が1.0 となるように基準化するものとする。

多層1軸偏心系の1次等価質量比 *m*₁*は(15)式で表すことができる。

$$m_{1}^{*} = \frac{M_{1}^{*}}{\sum m} = \frac{1}{\sum m} \cdot \beta_{1} \{\phi_{1}\}^{T} \begin{bmatrix} [m] & [0] \\ [0] & [m] \end{bmatrix} \{\{1\}\}$$
(15)

ここで 刺激係数β1は(13)(14)式より(16)式で表される。

$$\beta_{1} = \frac{\{\phi_{1}\}^{T} \begin{bmatrix} [m] & [0] \\ [0] & [m] \end{bmatrix} \{\{0\}\}}{\{\phi_{1}\}^{T} \begin{bmatrix} [m] & [0] \\ [0] & [m] \end{bmatrix} \{\phi_{1}\}}$$
$$= \frac{\phi_{TY}}{\phi_{TY}^{2} + \phi_{TZ}^{2}} \cdot \frac{\{\phi_{S1}\}^{T} [m] \{1\}}{\{\phi_{S1}\}^{T} [m] \{\phi_{S1}\}}$$
$$= \beta_{T1} \cdot \beta_{S1}$$
(16)

(15)式に(16)式を代入し,さらに無偏心系および等価単 層偏心系における1次等価質量比 m_{T1}^* , m_{S1}^* が(17),(18) 式で表されることに留意すると(19)式の関係が得られる。

$$m_{s_{1}}^{*} = \frac{M_{s_{1}}^{*}}{\sum m} = \frac{1}{\sum m} \cdot \beta_{s_{1}} \{\phi_{s_{1}}\}^{T} [m] \{l\}$$
(17)

$$m_{T1}^{*} = \frac{M_{T1}^{*}}{m} = \beta_{T1} \cdot \phi_{TY1}$$
(18)

$$m_{1}^{*} = \frac{1}{\sum m} \cdot \beta_{1} \cdot \phi_{TY1} \cdot \{\phi_{S1}\}^{T} [m] \{\phi_{S1}\}$$
$$= (\beta_{T1} \cdot \phi_{TY1}) \cdot \left(\frac{1}{\sum m} \cdot \beta_{S1} \cdot \{\phi_{S1}\}^{T} [m] \{\phi_{S1}\}\right)$$
$$= m_{T1}^{*} \cdot m_{S1}^{*}$$
(19)

すなわち多層1軸偏心系の1次等価質量比 m₁*は,等価

Fig.3 m_{T1}^* in counter line on the *E*-*J* plane

単層偏心系の1次等価質量比 m_{T1} *と無偏心系の1次等価質量比 m_{S1} *の積となる。Fig.2 に1次モードが逆三角形である無偏心系の1次等価質量比 m_{S1} *と層数Nの関係,Fig.3 に等価単層1軸偏心系の1次等価質量比 m_{T1} *と偏心比E,弾力半径比Jの関係を示す。Fig.2 より明らかなように,無偏心系の等価1次質量比 m_{S1} *は層数Nの増加とともに低下しているがその変動は次第にゆるやかとなり,0.75 に漸近している。一方,Fig.3 においては,等価単層1軸偏心系の1次等価質量比 m_{T1} *は偏心比Eおよび弾力半径比Jにより著しく変動し,特にJが1以上の領域では m_{T1} *は小さい。

以上より,多層1軸偏心系の1次等価質量比 m_1 *は m_{S1} * と m_{T1} *の積であるため, m_1 *は層数Nよりも偏心比Eおよ び弾力半径比Jの影響を著しく受ける。また,多層1軸偏 心系においても単層偏心系と同様にJが大きい場合には m_1 *が大きくなるため,弾力半径比Jが大きい多層1軸偏 心系では1次モード応答が支配的となる事が推測できる。

3. 解析諸元

3.1. 解析建物モデル

解析対象は Fig.4 に示されている X 方向 4m × 6 スパン, Y方向8m×1スパンの矩形平面を持つ4層建物および7 層建物である。床の単位面積あたり重量を 11.8 k N/m², 階高hを各階ともに 3.75mと仮定した。加振方向であるY 方向の降伏ベースシアー0.5W(W:建物全重量)とした。 直交方向である X 方向構面は弾性挙動するものと仮定し た。 Y方向構面は,構面(1)では Fig.5(a)に示す耐震壁要素 と Fig.5(b)に示す純ラーメン要素が配置され,構面(2)~(7) では純ラーメンのみが配置されているものと仮定した。各 層の耐力 V_iは(20)式により与えるものとした。

$$V_i = \frac{N+i}{N+1} \times 0.5 \times \left(\sum_{j=i}^{N} w\right)$$
(20)

ここで,Nは建物層数,iは対象層でwは建物の各階重 量である。全てのモデルにおいて, 耐震壁要素の耐力は 0.3V_i, 純ラーメン要素 (7 要素)の耐力は 0.1V_iとした。 各要素の降伏変位は、全ての層において耐震壁要素の降伏 変位を 1/250h, 純ラーメン要素の降伏変位を 1/150h とし た。各要素の復元力特性は,曲げ破壊型の挙動を想定して Takeda モデル⁴⁾を用いた。X 方向構面の剛性は各構面とも に等しいものとし,X 方向の層全体の剛性が Y 方向の弾 性時における層全体の剛性と等しくなるように設定した。

偏心建物の1次モード形の違いによる影響を見るため, 上記のモデル(Model-TS)に加えて,解析上で建物質量mお よび構面配置は変更せずに回転慣性質量 / を4倍に設定し たモデル(Model-TF)を設定した。前述の Fig.3 上に各モデ ルの偏心比 E および弾力半径比 J を示した。Fig.3 に示す ように, Model-TS では, J が大きく, m_{T1}*が大きい。一方

Fig. 6 Natural modes of analytical models

Table 1	List	of	ground	motion
---------	------	----	--------	--------

地震波	原記録の 最大加速度 (m/s ²)	原記録に対する倍率				
		4 層モ	ミデル	7 層モデル		
		1/200	1/100	1/200	1/100	
ELC	3.42	0.970	1.500	1.075	1.670	
TAF	1.57	1.608	2.910	2.314	4.260	
HAC	1.83	1.210	2.030	1.432	2.170	
TOH	2.58	1.002	1.316	0.790	1.191	
JKB	8.18	0.289	0.500	0.400	0.653	
FKI	8.02	0.580	0.732	0.535	0.680	

の Model-TF では, J が小さく m_{T1} *が小さい。各モデルの 弾性モードを Fig. 6 に示す。Model-TS では,弾性1次モ ード形は並進卓越型のモードとなり,1次等価質量比 m₁* は大きい。一方, Model-TF では, 弾性1次モード形は回 転卓越型のモードとなり, m1*は小さい。

減衰は瞬間剛性比例型とし,弾性1次モードに対して 3%と仮定した。

3.2. 入力地震動

入力地震動は Y 方向からの 1 方向入力とした。入力地 震動として, El Centro 1940NS(ELC), Taft 1952NS(TAF), Hachinohe 1968EW(HAC), Tohoku Univ. 1978NS(TOH), JMA Kobe 1995NS(JKB), Fukiai 1995NS(FKI)の6記録における 最初の 25 秒間をそれぞれ使用した。入力の大きさは,解 析建物モデルにおいて偏心を無視した場合に最上階変位 が 1/200 および 1/100 となるように設定した。Table 1 に各 地震波の原記録の最大加速度,ならびに原記録に対する倍 率を示す。数値積分法は Newmark- β 法(β =1/4)を用いた。 3.3. 解析ケースの設定

等価1自由度系による多層1軸偏心系の応答評価の妥当 性を検証するため,以下の3つのケースを設定する。

- Case 1: 多層 1 軸偏心系モデルの時刻歴応答解析
- Case 2: 多層 1 軸偏心系モデルを文献 3)の方法に従っ て等価単層 1 軸偏心系に縮約して時刻歴応答 解析
- Case 3: Case 2 で用いる等価単層 1 軸偏心系モデルを 等価 1 自由度系に縮約して時刻歴応答解析

ここで, Case 2 における等価単層 1 軸偏心系への縮約 に際して, 無偏心系の 1 次モード形 $\beta_{S1}\{\phi_{S1}\}$ は線形・非線 形に関わらず逆三角形であると仮定した。また, Case 3 で は文献 2)と同様に要素の塑性化に伴う 1 次モード形の変 動を考慮し, 各ステップにおける 1 次モード $\beta_1\{\phi_1\}$ を当該 ステップにおける各要素の割線剛性を用いて固有値解析 により定め, 等価 1 自由度系の運動方程式((3)式)にお ける等価質量 M_1^* , 等価減衰定数 C_1^* を順次定めて解析を 行った。なお, 文献 3)における非線形応答評価法は, Case 3 を簡略化したものに相当する。以下では, Case 1 の多層 1 軸偏心系モデルの時刻歴応答解析を精解として議論を 進める。

4. 等価1自由度系による応答評価の妥当性の検証

4.1. 等価単層1軸偏心系の応答

Fig.7 および Fig.8 に 7 層モデルにおける Case 1 と Case 2 の応答時刻歴を示す。用いた入力地震動は ELC 記録を 1.670 倍したものである。Fig.7 と Fig.8 より, Model-TS と Model-TF では, Case 1 と Case 2 の時刻歴が, 最上階重心 における並進変位 y7, 回転角 6, のいずれにおいても良好に 一致していることがわかる。

4.2. 等価1自由度系による応答評価の妥当性の検証

Fig.9 および Fig.10 に 7 層モデルにおける Case1 と Case 3 の応答時刻歴を示す。用いた入力地震動は Fig.7 および Fig.8 と同じで ELC 記録を 1.670 倍したものである。Fig.9 より, Model-TS の場合では 1 次等価質量比 m_1^* の値が常に 0.6 以上であり, Case 1 と Case 3 の時刻歴が良好に一致し ている事がわかる。一方で Fig.10 より, Model-TF の場合 では m_1^* の値が常に 0.5 未満となり, Case 1 と Case 3 の対

Fig. 9 Response of Case 1 and Case 3(Model-TS)

Fig. 10 Response of Case 1 and Case 3(Model-TF)

応が悪い事がわかる。これは、文献 2)で示した単層 1 軸偏 心系の場合と同様に, m_1^* が大きい場合には 1 次モード応 答が支配的となる一方で m_1^* が小さい場合には 2 次以上の モード応答の影響が顕著となるためである。従って,多層 1 軸偏心系の場合も単層 1 軸偏心系と同様, m_1^* が大きい 場合には等価 1 自由度系による応答評価が可能であるが, m_1^* が小さい場合には等価 1 自由度系による応答評価は困 難である。Fig.11 と Fig.12 に,各モデルにおける Case 1 と Case3 における最上階重心変位の最大応答の比較を示 す。Fig.11 より, m_1^* が大きい Model-TS では Case 1 と Case 3 の最大応答は概ね \pm 20%の範囲で良好に対応している事 がわかる。一方 Fig.12 においては, m_1^* が小さい Model-TF では Case 1 と Case 3 の対応は悪い。

以上により,多層1軸偏心系の応答は,単層1軸偏心系 と同様に²⁾,弾力半径比が大きい場合には1次等価質量比 m₁*が大きくなり等価1自由度系によって評価可能である という事ができる。

4.3. 簡略化した等価1自由度系による応答評価

前項の検討において,多層1軸偏心系の応答は,1次等 価質量比m1*が大きい場合のみ等価1自由度系によって評 価可能であることがわかった。そこで本項では,文献3) の方法に従い,簡略化した等価1自由度系を用いて Model-TSの応答評価を試みた(以下 Case 4 と表記)。Fig.13 に最上階における各構面の最大応答変位を示す。Fig.13よ り, Case 1 と Case 4 は7層モデルではばらつきが大きい ものの概ね対応していることがわかる。

5. まとめ

本論文では各階重心および剛心,耐力の中心が同一鉛直 線上にあり弾力半径比が全層で等しい多層 1 軸偏心系を 対象として,等価1自由度系による応答評価の妥当性を検 証した。その結果,単層1軸偏心系の時と同様に,弾力半 径比が大きい多層1軸偏心系の場合には1次等価質量比が 大きくなり等価1自由度系による応答評価が可能である ことがわかった。

参考文献

- American Society of Civil Engineers: Prestandard and Commentary for the Seismic Rehabilitation of Buildings, FEMA-356, Nov. 2000.
- 2) 藤井 賢志,中埜 良昭,真田 靖士:単層1軸偏心 建物の非線形応答評価法に関する研究,構造工学論文 集, Vol. 48B, 2002.
- 3) 藤井 賢志,中埜 良昭,真田 靖士:多層1軸偏心 建物の非線形応答評価法に関する研究,コンクリート 工学年次論文報告集,現在投稿中
- Takeda, T. Sozen, M.P. and Nielsen, N. N.: Reinforced Concrete Response to Simulated Earthquakes, Journal of ASCE, pp.2557-2573, Dec, 1970

Fig. 11 Maximum displacement at C.M. (Model-TS)

Fig. 12 Maximum displacement at C.M. (Model-TF)

Fig. 13 Maximum displacement on frame (Model-TS)