梁の変形拘束を考慮した無補強組積造壁を含む RC 造架構の耐震性能評価

(その1)実験概要および剛梁型試験体の実験結果

正会員	○楊	勇*□	同	晉	沂雄*1	同	崔	琥*2
			同	高橋	典之*2	同	中埜	良昭*3

無補強組積造壁	RC 造架構	静的載荷実験
梁変形	剛梁型試験体	柔梁型試験体

1. はじめに

筆者らは既実施した無補強コンクリートブロック造壁(以 下,ブロック造壁)を有する RC 造架構の静的加力実験 ¹⁾よ り、梁の変形が壁体の破壊パターンおよび架構全体の耐震性 能に大きく影響することを確認した。

そこで、本研究では既往の研究成果をさらに発展させるべく、 梁の変形拘束によるブロック造壁の対角圧縮ストラットの形成角 度や幅の推移などを定量的に算定することを目的に、計6体の剛 梁型および柔梁型試験体を計画した(ベアーフレーム 2 体、イン フィルドフレーム4体(このうち2体は単調加力用))。本報では、 実験概要や、正負交番繰り返し載荷を行った剛梁型ベアーフレー ム(BFRB, <u>Bare Frame with Rigid Beam</u>)試験体および単調載荷を 行った剛梁型インフィルドフレーム (IFRB, Infilled Frame with Rigid Beam) 試験体の実験結果について報告する。

2. 実験概要

2.1 試験体概要

本試験体は 1980 年代における韓国の学校建物の標準設計 に基づいた4階建て学校建物の1階を想定した1/4スケール の試験体である。縮小試験体の設計方針などについては文献 1)を参考されたい。図1に剛梁型試験体の詳細を示す。

2.2 材料試験結果

表 1~表 3 に各材料試験結果を示す。コンクリートの設計基 準強度は 21MPa としたが、設計値を約 40% 上回った。鉄筋の降 伏強度も規格降伏点強度を 5~20%程度上回った。縮小ブロック の3段プリズム圧縮強度およびヤング係数はそれぞれ実大の約 80%および約 60%に留まったが、ヤング係数の増減はブロック 造壁のせん断応力に大きな影響を与えないことを確認した¹⁾。

2.3 計測計画および加力計画

本実験の計測計画は基本的に既実施した実験と同様である¹⁾。 本計測計画の特徴としては、ブロック造壁のストラット形成角 度や幅から壁体の架構全体へのせん断力負担分を定量的に算定 するため,全てのブロックユニット(計 116 箇所)に3軸 歪ゲージを貼り付けたことである(図1)。図3に本実験の 載荷システムを示す。試験体に作用する水平力は原則として 頂部部材角 0.1, 0.2, 0.4, 0.67, 1.0, 1.5, 2.0, 3.0%までと した。ただし、試験体の破壊状況に応じて載荷ルールを変更 または載荷を終了した。一方、正負交番繰り返し載荷におい ては各部材角に対しそれぞれ2.5 サイクルずつ載荷した。

3. 実験結果

図 3~図 5 に荷重-変形関係,最終ひび割れ計測部材角に おける破壊状況および両柱の曲率分布をそれぞれ示す。

3.1 BFRB 試験体

本試験体では、部材角+0.065%から左柱に曲げひび割れが 発生し、部材角+0.2%で右柱にも曲げひび割れが観測された。 部材角+0.4%では左柱にせん断ひび割れが、部材角+0.67%で

表1 コンクリートの圧縮強度試験結果

圧縮	i強度(MPa)	ヤンク	ヤング係数(×10 ⁴ MPa)			割裂強度(MPa)		
	29.0		2.1			2.4		
表 2	鉄筋の引引	長強度試	験結果					
古汉	使用	鉄筋	降伏強度	引張強	度	ヤング	係数	
回注	箇所	規格	(MPa)	(MP	a)	$(\times 10^5 MPa)$		
D6	柱主筋	SD345	371	525		2.1		
D3	性相短肋	SD390	425	425 495			1.9	
表 3	縮小フロッ	0703	段フリスム	上稲試	 额治:	果		
	<u> </u>	(MPa)		ヤング停	系数 (×10 ⁴ MPa)			
* F #	6.5 (/.3) * _* ^/r	アドナオーハ	1 + 1=-=	1.1 (2.1)		
* 圧縮 クの	強度は空洞部。 結果である。	どるむ主地	形町面傾で际	した値 ぐ	, ()	の値は美人	.) Ц У	
1410				8-00 96 x 08@	● 3軸至 50 3@70 48×4 70 —8-D1			
¹⁵⁰ 110 ⁸⁹⁰ 110, 150, 110, 150, 170, 170, 1410 ¹⁴¹⁰ 450, 1410 ¹⁴¹⁰ 450, 14500, 1450, 1450, 14500, 1450, 1450, 14500, 14500, 1450, 1450, 1								
水平加力用アクチュエータ								
			正加力 正加力用 アクチュエー (4 <i>MPa</i>)				500 390 1410 425	

Seismic Performance of RC Frames with URM Infill considering Beam Deformation Part 1. Experiment Outline and Test Results of Rigid Beam Specimens

YANG Yong, JIN Kiwoong, CHOI Ho, TAKAHASHI Noriyuki and NAKANO Yoshiaki は右柱にせん断ひび割れが発生し、この部材角で柱主筋が降 伏した。その後、部材角+2.0%まで耐力が徐々に上昇し、部 材角+2.0%で最大耐力 34.5kN を記録した。本試験体は部材角 +3.0%付近で両柱のせん断ひび割れが大きく開き、最終的に せん断破壊して終局に至った。

本試験体におけるせん断力の計算結果を図 3(a)に示す。ここで、曲げ終局モーメント M_U はコンクリートかぶり厚さ (20mm) が断面せい(110mm)に比べて相対的に大きいこと を考慮した上でストレスブロックに基づき精算した²⁾。また、 曲げ終局時せん断力 Q_{MU} の算定時の柱の可撓長さは、図5よ り両柱ともに反曲点が柱高さのほぼ中央に位置したため、柱 の全長さ(h_0 =610mm)を用いた。図3(a)より、計算結果は 実験結果と概ね対応する結果となった。

3.2 IFRB 試験体

本試験体では、部材角+0.05%から壁体の目地ひび割れが生 じ、その直後に左柱に曲げひび割れが発生した。部材角 +0.1%では壁体の左下部に階段状のひび割れが発生し(図 4(b))、その部分の壁体が腰壁のように左柱下半分の変形を拘 束したため(図 5 の左柱の図参照)、早い段階(部材角 +0.27%)で左柱の主筋が降伏した。その後、部材角+0.4%で は左柱の柱頭部に、部材角+0.67%には右柱の柱脚部にそれぞ れせん断ひび割れが生じた。また、部材角+0.7%付近では右 柱の主筋が降伏し、最大耐力 68.5kN を記録した。その後、部 材角 1.8%まで著しい耐力低下は生じなかったが,部材角 +1.8%付近で左柱の柱頭部および右柱の柱脚部のせん断ひび 割れが急激に開き,せん断破壊して終局に至った。

本試験体における両柱の負担せん断力の計算結果を図 3(b)に 示す。本試験対では前述したとおり,部材角+0.1%で発生した 壁体の左下部の階段状ひび割れによる左柱の変形拘束が載荷終 了時まで続いたため,左柱の可撓長さは $h_0/2$ と仮定した。一 方,右柱の可撓長さは図5に示したように反曲点が柱高さのほ ぼ中央に位置したため,柱の内法高さ h_0 を用いた。図3より, 壁体の柱への変形拘束によって両柱のせん断力の和は BFRB 試験体より大きい結果となった。また,ブロック造壁の負担 せん断力を,架構全体のせん断力から両柱のせん断力を差し 引くことにより算定すると,ブロック全断面積に対する平均 せん断応力度はおよそ 0.5MPa である(図3(b)のハッチ部分)。

4. まとめ

本報では、剛梁型ベアーフレームおよび剛梁型インフィル ドフレームの面内方向への静的載荷実験を行い、破壊経過お よび荷重-変形関係を検討した。その結果、壁体の柱への拘 束により柱の挙動が異なることやそれが架構全体の変形能力 に影響を及ぼすことがわかった。

[参考文献]

 1) 晉沂雄他:無補強組積造壁を含む RC 造架構の静的および動的載荷 実験(その1~7),日本建築学会学術講演梗概集,2007~2011年
2)日本建築学会:鉄筋コンクリート構造計算基準・同解説,2010

1		T 1 1 1 10 10 11	
*2	東京大学	生産技術研究所	助教・博士(工学)
*3	東京大学	生産技術研究所	教授・工博

*1 Graduate Student, Graduate School of Eng., The Univ. of Tokyo *2 Research Associate, IIS, The Univ. of Tokyo, Ph.D.

*3 Professor, IIS, The Univ. of Tokyo, Dr. Eng.